Published: 2026-01-01
Penerapan SMOTE dan XGBoost untuk Klasifikasi Penyakit Ginjal Kronis pada Data yang Tidak Seimbang
DOI: 10.35870/jtik.v10i1.5544
Muhammad Ghufron Syifa, Nadia Anissa Maori, Adi Sucipto
- Muhammad Ghufron Syifa: Universitas Islam Nahdlatul Ulama Jepara
- Nadia Anissa Maori: Universitas Islam Nahdlatul Ulama Jepara
- Adi Sucipto: Universitas Islam Nahdlatul Ulama Jepara
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Chronic kidney disease (CKD) is a global health issue that requires accurate diagnosis to prevent errors and unwanted side effects. This study aims to develop a reliable classification model using the XGBoost algorithm and to explore the effectiveness of the SMOTE method in addressing data imbalance. The dataset is sourced from the UCI Machine Learning Repository, consisting of 400 patient records with 25 attributes. The results indicate that the developed model performs well, with evaluation metrics (Accuracy, Precision, Recall, F1-Score, and AUC-ROC) nearing 1.0. The research findings reveal that the model without SMOTE is slightly superior, achieving an accuracy of 0.9874 compared to 0.9811 for the model with SMOTE. Analysis shows that the data imbalance is not significant, and XGBoost is resilient to unbalanced data. This study also identifies key factors influencing CKD diagnosis, such as hemoglobin and albumin, which can assist medical professionals in making more accurate diagnoses.
Keywords
Chronic Kidney Disease ; XGBoost ; SMOTE
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 10 No. 1 (2026)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2026
-
License: CC BY 4.0
-
Copyright: © 2026 Authors
-
DOI: 10.35870/jtik.v10i1.5544
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Muhammad Ghufron Syifa
Program Studi Tekni Informatika, Fakultas Sains dan Teknologi, Universitas Islam Nahdlatul Ulama Jepara, Kota Jepara, Provinsi Jawa Tengah, Indonesia.
Nadia Anissa Maori
Program Studi Tekni Informatika, Fakultas Sains dan Teknologi, Universitas Islam Nahdlatul Ulama Jepara, Kota Jepara, Provinsi Jawa Tengah, Indonesia.
-
-
-
-
Cahyaningtyas, C., Nataliani, Y., & Widiasari, I. R. (2021). Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE. Aiti, 18(2), 173-184. https://doi.org/10.24246/aiti.v18i2.173-184.
-
Ernawati, S., & Maulana, I. (2025). Meningkatkan Klasifikasi Penyakit Diabetes Menggunakan Metode Ensemble Softvoting Dengan SMOTE-ENN dan Optimasi Bayesian. Evolusi: Jurnal Sains dan Manajemen, 13(1), 71-86. https://doi.org/10.31294/evolusi.v13i1.8267.
-
Faska, R. M., Gusti, S. K., Budianita, E., & Syafria, F. (2025). PENGARUH TEKNIK PENYEIMBANGAN DATA PADA KLASIFIKASI PENYAKIT NAFLD DENGAN ALGORITMA SVM. Jurnal Informatika Teknologi dan Sains (Jinteks), 7(2), 858-867. https://doi.org/10.58602/jima-ilkom.v4i1.41.
-
-
-
Irfannandhy, R., Handoko, L. B., & Ariyanto, N. (2024). Analisis Performa Model Random Forest dan CatBoost dengan Teknik SMOTE dalam Prediksi Risiko Diabetes. Edumatic: Jurnal Pendidikan Informatika, 8(2), 714-723. https://doi.org/10.29408/edumatic.v8i2.27990.
-
Juwita, D. A., Rachmaini, F., Abdillah, R., & Meliani. (2022). Drugs related problems (DRPs) pada pasien penyakit ginjal kronik (PGK) di RSUP Dr. M. Djamil. Jurnal Sains Farmasi & Klinis, 9(Sup), 184. https://doi.org/10.25077/jsfk.9.sup.184-189.2022.
-
-
-
-
-
Sidiq, S., Alfian, A., & Mabrur, N. S. (2025). Pengembangan Model Prediksi Risiko Diabetes Menggunakan Pendekatan AdaBoost dan Teknik Oversampling SMOTE. Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), 4(1), 13-23. https://doi.org/10.58602/jima-ilkom.v4i1.41.
-
-
Surono, M., Fadli, M., Purwanti, D. S., & Susanto, E. R. (2025). Hybrid XGBoost-SVM Model untuk Sistem Pendukung Keputusan dalam Prediksi Penyakit Diabetes. INSOLOGI: Jurnal Sains dan Teknologi, 4(3), 443-454. https://doi.org/10.55123/insologi.v4i3.5410.
-
Utami, M. P. S., & Dwi Susanti, B. A. (2022). Awareness questionnaire versi bahasa Indonesia untuk pasien chronic kidney disease (CKD) dengan hemodialisa: Pengembangan dan validitas. Jurnal Ilmiah Kesehatan Sandi Husada, 11, 175–181. https://doi.org/10.35816/jiskh.v11i1.720.
-
-
Yulianti, S. E. H., Soesanto, O., & Sukmawaty, Y. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 21-26. https://doi.org/10.31605/jomta.v4i1.1792.
-
-

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.