Published: 2025-01-01
Analisis Perbandingan Metode Convolutional Neural Network (CNN) dan MobileNet dalam Klasifikasi Penyakit Daun Padi
DOI: 10.35870/jtik.v9i1.3218
Tazkira Turahman, Erfan Hasmin, Komang Aryasa
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This study aims to compare the effectiveness of Convolutional Neural Networks (CNN) and MobileNet in classifying rice leaf diseases (Oryza sativa), such as bacterial blight, brown spot, and leaf smut. The use of a dataset from Kaggle facilitates the performance evaluation of both models. The results show that MobileNet achieved a higher accuracy of 94.79% in just 10 epochs, while CNN reached 90.24% after 150 epochs. MobileNet’s efficiency in terms of training time and performance is superior to CNN. This study recommends using MobileNet for similar applications and further research with an expanded dataset and other deep learning methods.
Keywords
Convolutional Neural Network (CNN) ; MobileNet ; Disease Classification
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 1 (2025)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/jtik.v9i1.3218
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Tazkira Turahman
Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dipa Makassar, Kota Makassar, Provinsi Sulawesi Selatan, Indonesia.
Erfan Hasmin
Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dipa Makassar, Kota Makassar, Provinsi Sulawesi Selatan, Indonesia.
-
Aini, N., & Liliana, D. Y. (2022). Prediksi gender berdasarkan citra mata menggunakan metode Convolutional Neural Network, Inception dan MobileNet. Bul. Poltanesa, 23(1), 226–232. DOI: https://doi.org/10.51967/tanesa.v23i1.1272.
-
Azizah, Q. N. (2023). Klasifikasi penyakit daun jagung menggunakan metode Convolutional Neural Network AlexNet. sudo J. Tek. Inform., 2(1), 28–33. DOI: https://doi.org/10.56211/sudo.v2i1.227.
-
Burhanuddin, R. R. (2024). Klasifikasi penyakit padi melalui citra daun menggunakan metode Naive Bayes. J. Inform. dan Tek. Elektro Terap., 12(2). DOI: https://doi.org/10.23960/jitet.v12i2.4012.
-
Citra, K., Daun, P., & Padi, T. (2023). Klasifikasi citra penyakit daun tanaman padi menggunakan CNN dengan arsitektur VGG-19. J. Sains dan Inform., 9(1), 37–45. DOI; https://doi.org/10.22216/jsi.v9i1.2175.
-
Hardi, N. (2022). Komparasi algoritma MobileNet dan Nasnet Mobile pada klasifikasi penyakit daun teh. Reputasi J. Rekayasa Perangkat Lunak, 3(1), 50–55. DOI: https://doi.org/10.31294/reputasi.v3i1.1313.
-
Hawari, F. H., Fadillah, F., Alviandi, M. R., & Arifin, T. (2022). Klasifikasi penyakit tanaman padi menggunakan algoritma CNN (Convolutional Neural Network). J. Responsif Ris. Sains dan Inform., 4(2), 184–189. DOI: https://doi.org/10.51977/jti.v4i2.856.
-
-
Khoiruddin, M., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi penyakit daun padi menggunakan Convolutional Neural Network. J. Dinda Data Sci. Inf. Technol. Data Anal., 2(1), 37–45. DOI: https://doi.org/10.20895/dinda.v2i1.341.
-
Milano, A. C. (2024). Klasifikasi penyakit daun padi menggunakan model deep learning Efficientnet-B6. J. Inform. dan Tek. Elektro Terap., 12(1). DOI: https://doi.org/10.23960/jitet.v12i1.3855.
-
-
Nurcahyati, A. D., Akbar, R. M., & Zahara, S. (2022). Klasifikasi citra penyakit pada daun jagung menggunakan deep learning dengan metode Convolution Neural Network (CNN). SUBMIT J. Ilm. Teknol. Informasi dan Sains, 2(2), 43–51. DOI: https://doi.org/10.36815/submit.v2i2.1877.
-
Oktaviana, U. N., Hendrawan, R., Annas, A. D. K., & Wicaksono, G. W. (2021). Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih ResNet101. J. RESTI (Rekayasa Sist. dan Teknol. Informasi), 5(6), 1216–1222. DOI: https://doi.org/10.29207/resti.v5i6.3607.
-
Setiaji, B., & Huda, A. A. (2022). Implementasi Gray Level Co-Occurrence Matrix (GLCM) untuk klasifikasi penyakit daun padi. Pseudocode, 9(1), 33–38. DOI: https://doi.org/10.33369/pseudocode.9.1.33-38.
-
Sigitta, R. C., Saputra, R. H., & Fathulloh, F. (2023). Deteksi penyakit tomat melalui citra daun menggunakan metode Convolutional Neural Network. Avitec, 5(1), 43. DOI: https://doi.org/10.28989/avitec.v5i1.1404.
-
Turnip, E., & Rozi, A. F. (2024). Analisis perbandingan arsitektur Convolutional Neural Network pada klasifikasi jenis penyakit daun padi. ProTekInfo (Pengembangan Ris. dan Obs. Tek. Inform.), 11(2), 1–6. DOI: https://doi.org/10.30656/protekinfo.v11i2.9052.
-
Zulfa, F. Y. S. S., Jasril, A. N., & Muhammad, I. (2023). Optimasi Convolutional Neural Network NASNetLarge menggunakan augmentasi data untuk klasifikasi citra penyakit daun padi. J. Media Inform. Budidarma, 7(2), 696–706. DOI: https://doi.org/10.30865/mib.v7i2.6056.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.