Fauziyyah, A. K. (2020). Analisis sentimen pandemi Covid19 pada streaming Twitter dengan text mining Python. Jurnal Ilmiah SINUS, 18(2), 31-42. DOI: http://dx.doi.org/10.30646/sinus.v18i2.491.
Kusnawi, K., & Rahardi, M. (2023). Sentiment Analysis of Neobank Digital Banking using Support Vector Machine Algorithm in Indonesia. JOIV: International Journal on Informatics Visualization, 7(2), 377-383. DOI: http://dx.doi.org/10.30630/joiv.7.2.1652.
Sari, W. F., Rahim, R., & Adrianto, F. (2023). Analisis Sentiment Review Pengguna BCA Mobile Menggunakan Teks Mining. Cakrawala Repositori IMWI, 6(2), 981-987. DOI: https://doi.org/10.52851/cakrawala.v6i2.295.
Gupta, A., & Kamthania, D. (2021, April). Study of Sentiment on Google Play Store Applications. In Proceedings of the International Conference on Innovative Computing & Communication (ICICC).
Rahman, M. Z., Sari, Y. A., & Yudistira, N. (2021). Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(11), 5120-5127.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. DOI: https://doi.org/10.1613/jair.953.
Ulfa, M. A., Irmawati, B., & Husodo, A. Y. (2018). Twitter Sentiment Analysis using Na¨ ive Bayes Classifier with Mutual Information Feature Selection. Journal of Computer Science and Informatics Engineering (J-Cosine), 2(2), 106-111.
Suhaeni, C., & Yong, H. S. (2023). Mitigating Class Imbalance in Sentiment Analysis through GPT-3-Generated Synthetic Sentences. Applied Sciences, 13(17), 9766. DOI: https://doi.org/10.3390/app13179766.
Sudriani, Y., Ridwansyah, I., & A Rustini, H. (2019, July). Long short term memory (LSTM) recurrent neural network (RNN) for discharge level prediction and forecast in Cimandiri river, Indonesia. In IOP Conference series: Earth and environmental science (Vol. 299, p. 012037). IOP Publishing. DOI 10.1088/1755-1315/299/1/012037.
Witantoa, K. S., ERa, N. A. S., Karyawatia, A. E., Arya, I. G. A. G., Kadyanana, I., & Astutia, L. G. (2022). Implementasi LSTM pada Analisis Sentimen Review Film Menggunakan Adam dan RMSprop Optimizer. Jurnal Elektronik Ilmu Komputer Udayana p-ISSN, 2301, 5373.
Cahyadi, R., Damayanti, A., & Aryadani, D. (2020). Recurrent neural network (rnn) dengan long short term memory (lstm) untuk analisis sentimen data instagram. JIKO (Jurnal Informatika dan Komputer), 5(1), 1-9. DOI: http://dx.doi.org/10.26798/jiko.v5i1.407.
Yan, H., Ma, M., Wu, Y., Fan, H., & Dong, C. (2022). Overview and analysis of the text mining applications in the construction industry. Heliyon, 8(12). DOI:https://doi.org/10.1016/j.heliyon.2022.e12088.
Widowati, T. T., & Sadikin, M. (2020). Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 11(2), 626-636. DOI: https://doi.org/10.24176/simet.v11i2.4568.
Permana, Y., & Emarilis, A. (2021, March). Stemming analysis indonesian language news text with Porter algorithm. In Journal of Physics: Conference Series (Vol. 1845, No. 1, p. 012019). IOP Publishing. DOI 10.1088/1742-6596/1845/1/012019.
Sarica, S., & Luo, J. (2021). Stopwords in technical language processing. Plos one, 16(8), e0254937. DOI: https://doi.org/10.1371/journal.pone.0254937.
Rojas‐Barahona, L. M. (2016). Deep learning for sentiment analysis. Language and Linguistics Compass, 10(12), 701-719. DOI: https://doi.org/10.1111/lnc3.12228.
Sailasya, G., & Kumari, G. L. A. (2021). Analyzing the performance of stroke prediction using ML classification algorithms. International Journal of Advanced Computer Science and Applications, 12(6).
Halim, A. M., Dwifebri, M., & Nhita, F. (2023). Handling Imbalanced Data Sets Using SMOTE and ADASYN to Improve Classification Performance of Ecoli Data Sets. Building of Informatics, Technology and Science (BITS), 5(1), 246-253. DOI: https://doi.org/10.47065/bits.v5i1.3647.