Implementasi Algoritma Long Short-Term Memory dalam Prediksi Konsentrasi Gas Metana (CH4) di Kota Salatiga
DOI:
https://doi.org/10.35870/jtik.v8i2.1917Keywords:
LSTM, Prediction, Accuracy, RMSEAbstract
Implementation of the Long Short Term Memory (LSTM) algorithm is done to build a prediction model that can handle complex time series data. Model development uses training and testing data and combines multiple time series to improve prediction accuracy. Model testing is done by measuring the root mean square error (RMSE) value as a performance indicator. The test results show that the application of the LSTM algorithm to the (CH4) sensor provides an optimal RMSE value, namely with a value for training data of 20% (0.09) and test data of 80% (0.14), indicating the prediction accuracy of methane gas (CH4) concentration is potentially unexploded, the results obtained have important implications for safety monitoring. This test contributes to the development of predictive methods to monitor and manage potential risks associated with (CH4) concentrations. The application of LSTM to (CH4) sensors not only improves prediction accuracy but also opens up opportunities for the development of safety systems that can more effectively predict and prevent potentially harmful phenomena due to methane gas.
Downloads
References
Sudibyo, N. A., Iswardani, A., Sari, K., & Suprihatiningsih, S. (2020). Penerapan Data Mining Pada Jumlah Penduduk Miskin Di Indonesia. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 1(3), 199-207. DOI: https://doi.org/10.46306/lb.v1i3.42.
Aksoy, A., Ertürk, Y. E., Erdogan, S., Eyduran, E., & Tariq, M. M. (2018). Estimation of honey production in beekeeping enterprises from eastern part of Turkey through some data mining algorithms. Pakistan Journal of Zoology, 50(6).
Lubis, M. S. Y. (2021, August). Implementasi Artificial Intelligence Pada System Manufaktur Terpadu. In Prosiding Seminar Nasional Teknik UISU (SEMNASTEK) (Vol. 4, No. 1, pp. 1-7).
Harlina, S. (2018). Data Mining Pada Penentuan Kelayakan Kredit Menggunakan Algoritma K-Nn Berbasis Forward Selection Data Mining on Credit Feasibility Determination Using K-Nn Algorithm Based on Forward Selection. Creative Communication and Innovative Technology Journal, 11(2), 236-244.
Samosir, R. A., Rozy, M. F., & Windarto, A. P. (2021). Penerapan Algoritma Regresi Linier Berganda dalam Mengestimasi Jumlah Perceraian di Pengadilan Agama Simalungun. TIN: Terapan Informatika Nusantara, 2(1), 16-20.
hadnis Putra, R. F., Lhaksmana, K. M., & Adytia, D. (2018). Aplikasi IoT untuk Rumah Pintar dengan Fitur Prediksi Cuaca. eProceedings of Engineering, 5(1).
Efendi, Y. (2018). Internet of Things (IOT) sistem pengendalian lampu menggunakan Raspberry PI berbasis mobile. Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 4(2), 21-27.
Febrianti, F., Wibowo, S. A., & Vendyansyah, N. (2021). Implementasi IoT (Internet of Things) Monitoring Kualitas Air dan Sistem Administrasi Pada Pengelola Air Bersih Skala kecil. JATI (Jurnal Mahasiswa Teknik Informatika), 5(1), 171-178. DOI: https://doi.org/10.36040/jati.v5i1.3249.
Habibie, M. I. (2019). Deteksi Fraud Menggunakan Metode KMeans dan Euclidean Distance dalam Sensor IoT. In Proceedings of the National Conference on Electrical Engineering, Informatics, Industrial Technology, and Creative Media (Vol. 2, No. 1, pp. 1-7).
Alfandi, M., Pristiwanto, P., & Sihite, A. H. (2023). Penerapan Metode CNN-LSTM Dalam Memprediksi Hujan Pada Wilayah Medan. KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), 6(1), 490-499. DOI: http://dx.doi.org/10.30865/komik.v6i1.5713.
Firdaus, R. F., & Paputungan, I. V. (2022). Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory. Jurnal Penelitian Inovatif, 2(3), 453-460. DOI: https://doi.org/10.54082/jupin.99.
Lattifia, T., Buana, P. W., & Rusjayanthi, N. K. D. (2022). Model Prediksi Cuaca Menggunakan Metode LSTM. JITTER J. Ilm. Teknol. dan Komput, 3(1), 994-1000.
Faridah, N., & Sugiantoro, B. (2023). Analisis Optimasi Pada Algoritma Long ShortTerm Memory Untuk Memprediksi Harga Saham. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(1), 575-582.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Febyola Kurnia Tiara Putri, Alz Danny Wowor

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.