Automatic Purchase Order Classification Using SVM in POS System at Skus Mart
Main Article Content
Abstract
In retail business processes, decision-making regarding Purchase Order PO submissions often remains manual and subjective, creating risks that impede procurement efficiency. The study develops an automatic classification model to predict PO approval status using Support Vector Machine SVM algorithm integrated within Point of Sale POS systems. Historical purchase transaction data was obtained from SKUS Mart POS database containing 133 entries, including attributes such as item quantity, purchase price, previous stock levels, and total purchase amounts. The research applies CRISP-DM methodology, encompassing business understanding, data exploration, preprocessing normalization using StandardScaler, model training, evaluation, and deployment phases. The model was trained using linear kernel and validated through holdout technique with 80:20 ratio for training and testing. Test results demonstrate that the SVM model achieves 76.69% accuracy, 82.21% precision, 76.69% recall, and 78.51% F1-score. The model was implemented in a web-based POS system CodeIgniter 3 combined with Python scripts to generate automatic classifications displayed directly in the user interface. Although the model demonstrates adequate performance, the study has not compared its effectiveness against other machine learning algorithms such as Random Forest or K-Nearest Neighbor. These findings establish initial groundwork for machine learning integration to support decision automation in procurement systems.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.
How to Cite
References
Arman, M., & Maberur, R. (2022). Perancangan aplikasi point of sales pada toko Cahaya Purnama Soppeng. Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI), 5(1), 43-50. https://doi.org/10.57093/jisti.v5i1.108
Hanggaraxsha, I., & Gunawan, D. (2024). Aplikasi POS berbasis web terintegrasi dengan WhatsApp pada Fuku Petshop. The Indonesian Journal of Computer Science, 13(2). https://doi.org/10.33022/ijcs.v13i2.3893
Isfahani, R., Firdaus, M. I., & Ibrahim. (2022). Sistem informasi point of sale pada Point Coffee Banjarmasin berbasis web [Diploma thesis, Universitas Islam Kalimantan MAB]. https://eprints.uniska-bjm.ac.id/9881/
Nistrina, K., & Rahmania, A. (2021). Sistem informasi point of sale berbasis website studi kasus: PT Barokah Kreasi Solusindo (Artpedia). J-SIKA: Jurnal Sistem Informasi Karya Anak Bangsa, 3(02), 1-12. https://ejournal.unibba.ac.id/index.php/j-sika/article/view/687
Gani, A. G., Dewi, P. F., & Sugiharto, A. (2023). Sistem informasi point of sale berbasis web pada Dapur Caringin Tilu Bandung. JSI (Jurnal Sistem Informasi) Universitas Suryadarma, 10(2), 11-22. https://doi.org/10.35968/jsi.v10i2.1072
Siddik, M., & Samsir, S. (2020). Rancang bangun sistem informasi POS (point of sale) untuk kasir menggunakan konsep bahasa pemrograman orientasi objek. JOISIE (Journal of Information Systems and Informatics Engineering), 4(1), 43-48. https://doi.org/10.35145/joisie.v4i1.607
Nugraha, P. G. S. C. (2021). Rancang bangun sistem informasi software point of sale (POS) dengan metode waterfall berbasis web. JST (Jurnal Sains dan Teknologi), 10(1), 92-103. https://doi.org/10.23887/jstundiksha.v10i1.29748
Herdiansyah, A. T., Pratama, A. A., Octavia, I., Baehaqi, R. A. S., Saifudin, A., & Desyani, T. (2021). Perancangan sistem informasi point of sale berbasis website pada Toko Azam Grosir dengan metode waterfall. Jurnal Informatika Universitas Pamulang, 6(2), 388-394. https://doi.org/10.32493/informatika.v6i2.11773
Tundo, Eldina, R., Setiawan, K., & Fajri, R. (2024). Sentiment analysis of cigarette use based on opinions from X using Naive Bayes and SVM. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 5(3), 2561-2569. https://doi.org/10.35870/jimik.v5i3.947
Akbar, Y., Az-Zahra, H. S., Setiawan, K., & Fajri, R. (2024). Implementation of the Naive Bayes method in Looker Studio for data on the achievement of Great IDN in IDN Akhwat School. Indonesian Journal of Multidisciplinary Science, 3(11). https://doi.org/10.55324/ijoms.v3i11.981
Silviana, S., Astuti, R., & Basysyar, F. M. (2024). Penerapan algoritma support vector machine (SVM) pada ulasan pengunjung wisata Kabupaten Kuningan. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 259-265. https://doi.org/10.36040/jati.v8i1.8257
Yanti, N. P. D. T., & Asana, I. M. D. P. (2023). Sistem klasifikasi pengajuan kredit dengan metode support vector machine (SVM). Jurnal Sistem Cerdas, 6(2), 123-133.
Chairunnisa, C., Ernawati, I., & Santoni, M. M. (2022). Klasifikasi sentimen ulasan pengguna aplikasi PeduliLindungi di Google Play menggunakan algoritma support vector machine dengan seleksi fitur Chi-Square. Informatik: Jurnal Ilmu Komputer, 18(1), 69-79. https://doi.org/10.52958/iftk.v17i4.4594
Triwati, I., Aulia, R., & Haramaini, T. (2025). Implementasi algoritma support vector machine (SVM) pada klasifikasi biaya sumbangan pembinaan pendidikan (SPP) siswa SMA Negeri 1 Na IX-X Aek Kota Batu Labuhan Batu Utara. Hello World Jurnal Ilmu Komputer, 3(3), 146-153. https://doi.org/10.56211/helloworld.v3i3.589
Aprihartha, M. A., Fallo, S. I., & Rasikhun, H. (2025). Perbandingan algoritma real adaptive boosting pada regresi logistik, CART, dan Naive Bayes dalam klasifikasi biji labu. Jurnal Sains Matematika dan Statistika, 11(2), 246-255. http://dx.doi.org/10.24014/jsms.v11i2.36859
Pratama, F., Nasir, M., & Sauda, S. (2020). Implementasi metode klasifikasi dengan algoritma support vector machine untuk menentukan stok persediaan barang pada Koperasi Karyawan Pangan Utama. Journal of Software Engineering Ampera, 1(2), 71-81. https://doi.org/10.51519/journalsea.v1i2.46
Pramansah, V. V., Mulyana, D. I., & Silfia, T. (2022). Analisis perbandingan algoritma SVM dan KNN untuk klasifikasi anime bergenre drama. Informasi Interaktif, 7(2), 101-107.
Mulyana, D. I., & Lutfianti, N. (2023). Penerapan sentimen analisis dengan algoritma SVM dalam tanggapan netizen terhadap berita resesi 2023. Sisfotenika, 13(1), 53-64. http://dx.doi.org/10.30700/jst.v13i1.1339
Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Rahmaddeni, R., Irawan, Y., & Hayami, R. (2023). Implementasi algoritma decision tree dan support vector machine untuk klasifikasi penyakit kanker paru. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 15-19. https://doi.org/10.57152/malcom.v3i1.591
Sabatini, T., & Itan, V. (2024). Implementasi support vector machine untuk klasifikasi kasus monkeypox: Pendekatan oversampling dan undersampling untuk mengatasi ketidakseimbangan kelas. Journal of Digital Ecosystem for Natural Sustainability, 4(1), 38-43. https://doi.org/10.63643/jodens.v4i1.234
Nugraha, Y. R. A. (2021). Implementasi algoritme support vector machine untuk klasifikasi penyesuaian uang kuliah tunggal terdampak pandemi Covid-19 (Studi kasus: Universitas Siliwangi). JTIK (Jurnal Teknik Informatika Kaputama), 5(2), 210-218. https://doi.org/10.59697/jtik.v5i2.545
Lumbanraja, F. R., Lufiana, F., Heningtyas, Y., & Muludi, K. (2022). Implementasi support vector machine (SVM) untuk klasifikasi penderita diabetes mellitus. Jurnal Komputasi, 10(1), 75-83. https://doi.org/10.23960/komputasi.v10i1.2940
Safitri, D. E., & Fitrani, A. S. (2022). Implementasi metode klasifikasi dengan algoritma support vector machine kernel Gaussian RBF untuk prediksi partisipasi pemilu terhadap demografi Kota Surabaya. Indonesian Journal of Business Intelligence (IJUBI), 5(1), 36-44. http://dx.doi.org/10.21927/ijubi.v5i1.2259
Abimanyu, S., Bahtiar, N., & Sarwoko, E. A. (2023). Implementasi metode support vector machine (SVM) dan t-distributed stochastic neighbor embedding (t-SNE) untuk klasifikasi depresi. Jurnal Masyarakat Informatika, 14(2), 146-158. https://doi.org/10.14710/jmasif.14.2.59513
Jalil, A., Homaidi, A., & Fatah, Z. (2024). Implementasi algoritma support vector machine untuk klasifikasi status stunting pada balita. G-Tech: Jurnal Teknologi Terapan, 8(3), 2070-2079. https://doi.org/10.33379/gtech.v8i3.4811
Arisona, G., Taruna, A. P., Irwanto, D., Bestari, A. B., & Juniawan, W. (2025). Classification based on the support vector machine for determining operational targets for controlling electricity usage with conventional meters: A case study of industrial and business tariff customers from PT PLN (Persero) Indonesia. IEEE Access, 13, 12388-12398. https://doi.org/10.1109/ACCESS.2025.3529295
Gonzalez-Lima, M. D., Ludeña, C. C., & Otazo-Sanchez, G. G. (2024). A graph classification method based on support vector machines and locality-sensitive hashing. IEEE Access, 12, 15791-15799. https://doi.org/10.1109/ACCESS.2024.3356572