Published: 2025-04-01
Comparison of Classification of Songket Fabric Types Using AlexNet and VGG19 (Visual Geometry Group) Method
DOI: 10.35870/ijsecs.v5i1.3815
Sri Lestari, Nida Apipah
- Sri Lestari: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Nida Apipah: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Abstract
This study aims to evaluate and compare the performance between deep learning models AlexNet and VGG19 in Songket fabric classification. Due to its complex patterns and subtle differences, Songket classification must be accurate. The datasets in this study are various types of Songket images and all datasets are classified by type for easy analysis. After intensive learning and evaluation, VGG19 is a superior classifier than AlexNet. The highest performance is achieved by the VGG19 method in terms of performance measure accuracy, precision, recall, and F1 score, which may be due to the increase in depth and better extraction of some detailed visual features from complex images. Although these results have substantial practical implications, some issues need to be further discussed before optimizing the results. Hyperparameters, such as learning rate or batch size, can be changed to optimize the speed and accuracy of the model. In addition, the diversity of the data should be increased by using data augmentation techniques to ensure that the model generalization to market conditions is possible. More complex additions (lighting changes, texture distortion simulation, or others) can also contribute to improving the robustness of the trained model to these disturbances. The conclusion of the research is the importance of improving the accuracy and usefulness of single fabric classification. This will result in its application in heritage preservation and textile development.
Keywords
VGG19 ; AlexNet ; Songket ; Fabric ; Comparison
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: April 1, 2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3815
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.




Sri Lestari
Informatics Engineering Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Iranita, M. S. (2023). Klasifikasi motif ulos tradisional Batak Toba menggunakan convolutional neural network [Skripsi, Universitas Medan Area]. Repositori Universitas Medan Area. https://repositori.uma.ac.id/jspui/handle/123456789/22924
-
Fendiawati, A. (2023). Klasifikasi American Sign Language menggunakan algoritma CNN arsitektur VGG-19 [Skripsi, Universitas Multi Data Palembang]. Repositori Universitas Multi Data Palembang. http://rama.mdp.ac.id:84/336/
-
Sri Arsa, D. M., & lainnya. (2022). Batik’s pattern recognition and generation: Review and challenges. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 10(2), 114-121. https://doi.org/10.24843/JIM.2022.v10.i02.p04
-
Akram, A. R., Rachmadinasya, S. A., Melvandino, F. H., & Ramza, H. (2023). Klasifikasi aktivitas olahraga berdasarkan citra foto dengan menggunakan metode convolutional neural network. Jurnal Informatika dan Teknik Elektro Terapan, 11(3s1). https://doi.org/10.23960/jitet.v11i3%20s1.3496
-
Setiawan, A. (2021). Implementasi aplikasi prediksi jangka waktu pengiriman barang menggunakan algoritma backpropagation [Skripsi, Universitas Bhayangkara Jakarta Raya]. Repositori Universitas Bhayangkara Jakarta Raya. https://repository.ubharajaya.ac.id/22831/
-
Pramuditha, A. Z., Suroso, S., & Fadhli, M. F. (2024). Face detection dengan model arsitektur VGG 19 pada metode convolutional neural network. Sistemasi: Jurnal Sistem Informasi, 13(5), 1998-2007. https://doi.org/10.32520/stmsi.v13i5.4399
-
Wasil, M. (2022). Pengaruh epoch pada akurasi menggunakan convolutional neural network untuk klasifikasi fashion dan furniture. Jurnal Informatika dan Teknologi, 5(1), 53. https://doi.org/10.29408/jit.v5i1.4393
-
-
Riana, D., Saputri, D. U. E., & Hadianti, S. (2023). Klasifikasi AlexNet dan deteksi tepi Canny untuk identifikasi citra Repomedunm. Jurnal Informasi dan Teknologi, 191-198. https://doi.org/10.37034/jidt.v5i1.295
-
Kusumawati, W. I., & Noorizki, A. Z. (2023). Perbandingan performa algoritma VGG16 dan VGG19 melalui metode CNN untuk klasifikasi varietas beras. Journal of Computer, Electronic, and Telecommunication, 4(2). https://doi.org/10.52435/complete.v4i2.387
-
Khairullah, I. K., Hartanto, A. D., Yusa, A., Hartatik, H., & Kusnawi, K. (2020). Deteksi citra digital menggunakan algoritma CNN dengan model normalisasi RGB. Intechno Journal: Information Technology Journal, 2(2), 56-61. https://doi.org/10.24076/intechnojournal.2020v2i2.1545
-
Darmi, Y., Kumala, R. D. M. V. N., & Muhammadiyah Bengkulu. (2023). Klasifikasi pola motif kain tenun Bumpak Desa Kampai Seluma menggunakan metode CNN. Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, 7(4). https://doi.org/10.33395/remik.v7i4.13008
-
Santosa, M., Swari, M., & Sihananto, A. (2024). Implementasi arsitektur AlexNet dan ResNet34 pada klasifikasi citra penyakit daun kentang menggunakan transfer learning. Jati (Jurnal Mahasiswa Teknik Informatika), 7(5), 3293-3301. https://doi.org/10.36040/jati.v7i5.7337
-
Amalia, I., Mawardi, I., Indrawati, I., Arhami, M., Muhammad, M., & Syahputra, G. (2023). Klasifikasi citra songket Aceh menggunakan metode probabilistic neural network. Jurnal Serambi Engineering, 8(3). https://doi.org/10.32672/jse.v8i3.6132
-
Falakhi, B., Achmal, E., Rizaldi, M., Athallah, R., & Yudistira, N. (2022). Perbandingan model AlexNet dan ResNet dalam klasifikasi citra bunga memanfaatkan transfer learning. Jurnal Ilmu Komputer dan Agri-Informatika, 9(1), 70-78. https://doi.org/10.29244/jika.9.1.70-78
-
Kusumawati, W., & Noorizki, A. (2023). Perbandingan performa algoritma VGG16 dan VGG19 melalui metode CNN untuk klasifikasi varietas beras. Journal of Computer, Electronic, and Telecommunication, 4(2). https://doi.org/10.52435/complete.v4i2.387
-
Navarro, P., Orlando, J., Delrieux, C., & Iarussi, E. (2021). SketchZooms: Deep multi-view descriptors for matching line drawings. Computer Graphics Forum, 40(1), 410-423. https://doi.org/10.1111/cgf.14197
-
Huang, M., & Fu, C. (2018). Applying image processing to the textile grading of fleece based on pilling assessment. Fibers, 6(4), 73. https://doi.org/10.3390/fib6040073
-
Kalaiselvi, K., & Kasthuri, M. (2024). Tuning VGG19 hyperparameters for improved pneumonia classification. The Scientific Temper, 15(2), 2231-2237. https://doi.org/10.58414/scientifictemper.2024.15.2.36
-
Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C., … & Halama, N. (2019). Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Medicine, 16(1), e1002730. https://doi.org/10.1371/journal.pmed.1002730
-
Yang, C., Lin, C., & Chen, W. (2019). Using deep principal components analysis-based neural networks for fabric pilling classification. Electronics, 8(5), 474. https://doi.org/10.3390/electronics8050474
-
Hussain, M., Khan, B., Wang, Z., & Ding, S. (2020). Woven fabric pattern recognition and classification based on deep convolutional neural networks. Electronics, 9(6), 1048. https://doi.org/10.3390/electronics9061048.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.