Published: 2023-12-10

Comparative Analysis VGG16 Vs MobileNet Performance for Fish Identification

DOI: 10.35870/ijsecs.v3i3.1763

Djarot Hindarto

Abstract

This research aims to conduct a comparative evaluation of the efficacy of two neural network architectures in the field of fish identification through the utilization of supervised learning techniques. The evaluation of VGG16 and MobileNet, which are prominent deep learning architectures, has been conducted about their speed, accuracy, and efficiency in resource utilization. To assess the classification performance of both architectures, we employed a dataset encompassing diverse fish categories. The findings indicated that the VGG16 model demonstrated superior accuracy in fish classification, albeit due to increased computational time and resource utilization. On the contrary, MobileNet exhibits enhanced speed and efficiency, albeit at a marginal cost to its accuracy. The findings of this study have the potential to inform the selection of deep learning models for fish recognition scenarios, considering the specific requirements of the task, such as prioritizing accuracy or efficiency. The findings mentioned above offer significant insights that can be utilized in the advancement of Artificial Intelligence (AI)-based applications within the domains of fisheries resource management and environmental monitoring. These applications specifically necessitate precise and effective fish recognition capabilities. The comparison findings indicate that the accuracy achieved by VGG16 was 0.99, whereas MobileNet also attained an accuracy of 0.99.

Keywords

Accuracy ; Fish Classification ; Supervised Learning ; MobileNet ; VGG16

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Issue Cover

Downloads

Article Metrics

If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).

Share:
Article Information

This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.

  • Issue: Vol. 3 No. 3 (2023)

  • Section: Articles

  • Published: December 10, 2023

AI Research Hub

This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.

Semantic Scholar Scite Dimensions Connected Papers

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)