Published: 2024-12-01
Implementation of RFM Analysis to Enhance Sales Patterns of Food and Beverages at Bonjour Café and Resto Using the Apriori Algorithm
DOI: 10.35870/ijsecs.v4i3.3073
Julvan Marzuki Putra Sibarani, Yuma Akbar, Sutisna, Kiki Setiawan
- Julvan Marzuki Putra Sibarani: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Yuma Akbar: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Sutisna: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Kiki Setiawan: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Abstract
The rapid growth of the culinary business has made business competition in this field increasingly tight, so a strategy is needed to increase food and beverage sales patterns. Bonjur Cafe Resto serves many food and beverage menus, but business actors need to try to produce product innovations in order to provide satisfactory service to customers. In this condition, a data processing technique is needed to determine customer segmentation and menu recommendations at Bonjur Cafe Resto. The analysis method used is RFM Analysis by analyzing customer behavior, analyzing purchase transaction data consisting of Recency Frequency Monetary (RFM) attributes and data mining techniques with the Apriori algorithm, where this algorithm is used to determine the most frequently appearing data set (frequent itemset). The results of this study are grouped into five categories of customers based on their purchasing behavior and association rules are formed with predetermined parameters, support 28% and confidence 70%. This can later be a recommendation for a menu combination from the data that has been collected and applied using the apriori algorithm so that it is expected to be used for service evaluation and be able to increase customer satisfaction so that Bonjur Cafe Resto can develop better
Keywords
RFM Analysis ; Apriori Algorithm ; Segmentation ; Customer ; Frequent Itemset
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 3 (2024)
-
Section: Articles
-
Published: December 1, 2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i3.3073
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Julvan Marzuki Putra Sibarani
Information Systems Study Program, Faculty of Computer Science, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
Yuma Akbar
Information Systems Study Program, Faculty of Computer Science, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
Sutisna
Information Systems Study Program, Faculty of Computer Science, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Sinaga, D. M., Sirait, W. H., & Windarto, A. P. (2021). Analisis algoritma Apriori dalam menentukan pola pemesanan konsumen pada Ucokopi. Journal of Informatics Management and Information Technology, 1(2), 68-73. https://doi.org/10.47065/jimat.v1i2.105.
-
Haidar, I. (2021). Implementasi algoritma Apriori untuk mencari pola transaksi penjualan (Studi Kasus: Carroll Kitchen). https://dspace.uii.ac.id/handle/123456789/36068.
-
Merliani, N. N., Khoerida, N. I., Widiawati, N. T., Triana, L. A., & Subarkah, P. (2022). Penerapan algoritma Apriori pada transaksi penjualan untuk rekomendasi menu makanan dan minuman. J. Nas. Teknol. dan Sist. Inf, 8(1), 9-16. https://doi.org/10.25077/TEKNOSI.v8i1.2022.9-16.
-
Nursikuwagus, A., & Hartono, T. (2016). Implementasi algoritma Apriori untuk analisis penjualan berbasis web. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 7(2), 701-706. https://doi.org/10.24176/simet.v7i2.784.
-
Susilowati, D., Hairani, H., Lestari, I. P., Marzuki, K., & Mardedi, L. Z. A. (2022). Segmentasi lokasi promosi penerimaan mahasiswa baru menggunakan metode RFM dan K-Means clustering. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 21(2), 275-282. https://doi.org/10.30812/matrik.v21i2.1542.
-
Widiyanto, A. T., & Witanti, A. (2021). Segmentasi pelanggan berdasarkan analisis RFM menggunakan algoritma K-Means sebagai dasar strategi pemasaran (Studi Kasus PT Coversuper Indonesia Global). KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 1(1), 204-215. https://doi.org/10.24002/konstelasi.v1i1.4293.
-
Larasati, I., Yusril, A. N., & Al Zukri, P. (2021). Systematic literature review analisis metode Agile dalam pengembangan aplikasi mobile. Sistemasi: Jurnal Sistem Informasi, 10(2), 369-380. https://doi.org/10.32520/stmsi.v10i2.1237.
-
-
-
Badaruddin, M., & Rayendra, R. (2022). Penerapan algoritma Apriori pada analisa data penjualan e-commerce. Jurnal Media Informatika Budidarma, 6(2), 1032-1037. https://doi.org/10.30865/mib.v6i2.3976.
-
Aditya, A., Marisa, F., & Purnomo, D. (2016). Penerapan algoritma Apriori terhadap data penjualan di Toko Gudang BM. Journal of Information Technology and Computer Science, 1(1), 224619. https://doi.org/10.31328/jointecs.v1i1.408.
-
Fauzi, R. M., & Mulyana, D. I. (2021). Implementasi data mining menggunakan metode least square untuk memprediksi penjualan lampu LED pada PT. Sumber Dinamika Solusitama. Jurnal Sosial Teknologi, 1(8), 907-919. https://doi.org/10.59188/jurnalsostech.v1i8.182.
-
Aprianti, W., Hafizd, K. A., & Rizani, M. R. (2017). Implementasi association rules dengan algoritma Apriori pada dataset kemiskinan. Limits: Journal of Mathematics and Its Applications, 14(2), 145-155. https://doi.org/10.12962/limits.v14i2.2933.
-
Yuliska, Y., & Syaliman, K. U. (2020). Literatur review terhadap metode, aplikasi dan dataset peringkasan dokumen teks otomatis untuk teks berbahasa Indonesia. IT Journal Research and Development, 5(1), 19-31. https://doi.org/10.25299/itjrd.2020.vol5(1).4688.
-
Novianti, D. (2019). Implementasi algoritma Naïve Bayes pada dataset hepatitis menggunakan Rapid Miner. Paradig.-J. Komput. dan Inform, 21(1), 49-54. https://doi.org/10.31294/p.v21i1.4979.
-
Sari, Y. R., Sudewa, A., Lestari, D. A., & Jaya, T. I. (2020). Penerapan algoritma K-Means untuk clustering data kemiskinan Provinsi Banten menggunakan RapidMiner. CESS (Journal Comput. Eng. Syst. Sci., 5(2), 192. https://doi.org/10.24114/cess.v5i2.18519.
-
Open Peer Review on Qeios (2020). Pseudocode. Definitions. National Cancer Institute. Pseudocode. NCI Thesaurus. Code C47900. https://doi.org/10.32388/TF77DY.
-
Darmawan, T., Birawa, A. S., Eryanto, E., & Mauritsius, T. (2020). Credit classification using CRISP-DM method on Bank ABC customers. International Journal of Emerging Trends in Engineering Research, 8(6). https://doi.org/10.30534/ijeter/2020/28862020.
-
-
-
-
-
-
Purnia, D. S., & Warnilah, A. I. (2017). Implementasi data mining pada penjualan kacamata menggunakan algoritma Apriori. IJCIT (Indonesian Journal on Computer and Information Technology, 2(2). https://doi.org/10.31294/ijcit.v2i2.2776.
-
-
Takdirillah, R. (2020). Penerapan data mining menggunakan algoritma Apriori terhadap data transaksi penjualan bisnis ritel. Edumatic: Jurnal Pendidikan Informatika, 4(1), 37-46. https://doi.org/10.29408/edumatic.v4i1.2081.
-
Nurajizah, S. (2019). Analisa transaksi penjualan obat menggunakan algoritma Apriori. Jurnal Inovtek Polbeng Seri Informatika, 4(1), 35-44. https://doi.org/10.35314/isi.v4i1.938.
-
Kristania, Y. M., & Listanto, S. (2022). Implementasi data mining terhadap data penjualan dengan algoritma Apriori pada PT. Duta Kencana Swaguna. Jurnal Teknoinfo, 16(2), 364-372. https://doi.org/10.33365/jti.v16i2.1973.
-
Djamaludin, I., & Nursikuwagus, A. (2017). Analisis pola pembelian konsumen pada transaksi penjualan menggunakan algoritma Apriori. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 8(2), 671-678. https://doi.org/10.24176/simet.v8i2.1566.
-
Miranda, S. A., Fahrullah, F., & Kurniawan, D. (2022). Implementasi association rule dalam menganalisis data penjualan Sheshop dengan menggunakan algoritma Apriori. Metik Jurnal, 6(1), 30-36. https://doi.org/10.47002/metik.v6i1.342.
-
Khanza, M., Toyib, R. T., & Onsardi, O. (2021). Implementasi algoritma Apriori untuk meningkatkan penjualan handphone di Toko Mardha Cell. Journal Scientific and Applied Informatics, 4(2), 221-235. https://doi.org/10.36085/jsai.v4i2.1674.
-
Abidin, Z., Amartya, A. K., & Nurdin, A. (2022). Penerapan algoritma Apriori pada penjualan suku cadang kendaraan roda dua (studi kasus: Toko Prima Motor Sidomulyo). Jurnal Teknoinfo, 16(2), 225-232. https://doi.org/10.33365/jti.v16i2.1459.
-
-
Saputra, R., & Sibarani, A. J. (2020). Implementasi data mining menggunakan algoritma Apriori untuk meningkatkan pola penjualan obat. JATISI (Jurnal Teknik Informatika dan Sistem Informasi, 7(2), 262-276. https://doi.org/10.35957/jatisi.v7i2.195.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.