Published: 2024-12-01
Classification of Customer Satisfaction with the K-Nearest Neighbor Algorithm in Relation to Employee Performance at PT. Airkon Pratama
DOI: 10.35870/ijsecs.v4i3.2948
Ahmad Suprianto, Untung Surapati, Yuma Akbar, Aditya Zakaria Hidayat
- Ahmad Suprianto: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Untung Surapati: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Yuma Akbar: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Aditya Zakaria Hidayat: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
PT. Airkon Pratama is the technical consultancy company in the field of maintenance, repair, and operate system. Among its projects are a four-building, multi-story tax office complex. PT. Airkon Pratama experience obstacles to know how its customer satisfaction with their services that is was measured by a questionnaireobtained from work order form. The purpose of this study is to determine how well K-Nearest Neighbor data classification accurately classifies customer satisfaction based on employee performance by PT. Airkon Pratama. The data used in this study is from PT. Airkon Pratama with the data processing using RapidMiner with the K-Nearest Neighbor method which produces an accuracy of 96.53%. Among them four performance indicators were rated as "good", and two as "adequate". Of the 196 that were correctly predicted to be "good," three were "adequate." Most of the 04 respondents gave a positive response indicating their satisfaction with the management of tax office facilities provided by PT. Airkon Pratama in January 2024.
Keywords
PT. Airkon Pratama ; RapidMiner Application ; K-Nearest Neighbor Algorithm
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 3 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i3.2948
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Ahmad Suprianto
Informatics Engineering Study Program, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
Untung Surapati
Informatics Engineering Study Program, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
Yuma Akbar
Informatics Engineering Study Program, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
-
Hendriyanto, M. D., & Sari, B. N. (2022). Penerapan Algoritma K-Nearest Neighbor Dalam Klasifikasi Judul Berita Hoax. Jurnal Ilmiah Informatika, 10(02), 80-84. https://doi.org/10.33884/jif.v10i02.5477
-
Halim, T. N., Martin, R., Hutasoit, R. K. B., & Aisyah, S. (2023). Klasifikasi Kepuasan Pelanggan Terhadap Platform E-Commerce dengan Metode K–Nearest Neighbor (K-NN). Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika), 8(2), 512-523. http://dx.doi.org/10.30645/jurasik.v8i2.636
-
Ariani, F., & Taufik, A. (2020). Perbandingan Metode Klasifikasi Data Mining untuk Prediksi Tingkat Kepuasan Pelanggan Telkomsel Prabayar. SATIN-Sains dan Teknologi Informasi, 6(2), 46-55. https://doi.org/10.33372/stn.v6i2.666
-
Diansyah, S. (2022). Klasifikasi tingkat kepuasan pengguna dengan menggunakan metode K-Nearest Neighbour (KNN). Jurnal Sistim Informasi dan Teknologi, 4, 7–12. https://doi.org/10.37034/jsisfotek.v4i1.114
-
Supriyadi, D., Safitri, S. T., Amriza, R. N. S., & Kristiyanto, D. Y. (2022). Klasifikasi loyalitas pengguna sistem e-learning menggunakan Net Promoter Score dan machine learning. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 8(1), 38. https://doi.org/10.26418/jp.v8i1.49300
-
Sundari, S., Windarto, A. P., Purba, Y. P., & Artikel, G. (2022). Penerapan data mining klasifikasi terhadap kepuasan pelanggan toko Bombay Textile. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(4), 2828–9099. https://doi.org/10.55123/jomlai.v1i4.1672
-
Widiana, S. A., Firdaus, I., Tenda, E., & Ketaren, E. (2023). Sistem Informasi Prediksi Penjualan Produk Thrift Di Toko Manado Menggunakan Algoritma K-Nearest Neighbor (K-Nn). Jurnal TIMES, 12(2), 52-57. https://doi.org/10.51351/jtm.12.2.2023708
-
Martiani, E., Setyanto, A., & Nasiri, A. (2024). Studi literatur mengenai prediksi kepuasan GrabFood menggunakan machine learning. Dielektrika, 11(1), 22–31. https://doi.org/10.29303/dielektrika.v11i1.367
-
Pradana, M. G., Nurcahyo, A. C., & Saputro, P. H. (2021). Penerapan metode K-Means klustering untuk menentukan kepuasan pelanggan. Creative Information Technology Journal, 7(1), 42. https://doi.org/10.24076/citec.2020v7i1.185
-
Febriyani, A., Prayoga, G. K., & Nurdiawan, O. (2021). Index kepuasan pelanggan Informa dengan menggunakan algoritma C.45. JURIKOM (Jurnal Riset Komputer), 8(6), 330. https://doi.org/10.30865/jurikom.v8i6.3686
-
Nugraha, F. T., & Hendry, H. (2023). Implementasi machine learning sebagai analisis kepuasan pelanggan terhadap penggunaan aplikasi Kai Access. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 8(4), 1248–1255. https://doi.org/10.29100/jipi.v8i4.4185
-
Abdy, S., Gultom, E. R. B., Ramadhany, S., & Afifudin, A. (2022). Prediksi penjualan sparepart mobil terlaris menggunakan metode K-Nearest Neighbor. JURIKOM (Jurnal Riset Komputer), 9(6), 2003. https://doi.org/10.30865/jurikom.v9i6.5189
-
Suwandi, A., & Fauzi, R. (2023). Analisis kepuasan konsumen terhadap kualitas produk menggunakan algoritma Naive Bayes. Computer and Science Industrial Engineering (COMASIE), 9(7), 30. https://doi.org/10.33884/comasiejournal.v9i7.7921
-
Salsabilah, B. N., Kadek, I., & Nuryana, D. (2023). Komparasi algoritma Naive Bayes dan K Nearest Neighbor dalam kepuasan pengguna fitur Tiktok Shop. Journal of Emerging Information System and Business Intelligence (JEISBI), 4(3), 31–39. Retrieved from https://ejournal.unesa.ac.id/index.php/JEISBI/article/view/54211
-
Riadi, I., & et al. (2024). Prediksi kelulusan tepat waktu berdasarkan riwayat akademik menggunakan metode K-Nearest Neighbor. Jurnal Teknik Informatika, 11(2), 249–256. https://doi.org/10.25126/jtiik.2024117330
-
Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2), 1883. https://doi.org/10.4249/scholarpedia.1883
-
Yuliarina, A. N., & Hendry, H. (2022). Comparison of prediction analysis of Gofood service users using the KNN & Naive Bayes algorithm with Rapidminer software. Jurnal Teknik Informatika (Jutif), 3(4), 847–856. https://doi.org/10.20884/1.jutif.2022.3.4.294.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.