Published: 2024-12-01

Classification of Customer Satisfaction with the K-Nearest Neighbor Algorithm in Relation to Employee Performance at PT. Airkon Pratama

DOI: 10.35870/ijsecs.v4i3.2948

Issue Cover

Downloads

Article Metrics
Share:

Abstract

PT. Airkon Pratama is the technical consultancy company in the field of maintenance, repair, and operate system. Among its projects are a four-building, multi-story tax office complex. PT. Airkon Pratama experience obstacles to know how its customer satisfaction with their services that is was measured by a questionnaireobtained from work order form. The purpose of this study is to determine how well K-Nearest Neighbor data classification accurately classifies customer satisfaction based on employee performance by PT. Airkon Pratama. The data used in this study is from PT. Airkon Pratama with the data processing using RapidMiner with the K-Nearest Neighbor method which produces an accuracy of 96.53%. Among them four performance indicators were rated as "good", and two as "adequate". Of the 196 that were correctly predicted to be "good," three were "adequate." Most of the 04 respondents gave a positive response indicating their satisfaction with the management of tax office facilities provided by PT. Airkon Pratama in January 2024.

Keywords

PT. Airkon Pratama ; RapidMiner Application ; K-Nearest Neighbor Algorithm

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)