Published: 2024-01-01
Clustering Data Calon Siswa Baru Menggunakan Metode K-Means di Pusat Pengembangan Anak Fajar Baru Cengkareng
DOI: 10.35870/jtik.v8i1.1426
Kiki Setiawan, Yulia Yanti Ayu Saputry
- Kiki Setiawan: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Affiliation name not available , Indonesia
- Yulia Yanti Ayu Saputry: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Affiliation name not available , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Clustering is the process of partitioning a set of data objects into subsets known as clusters. K-means is an unsupervised learning algorithm, K-Means also has a function to group data into data clusters. The K-Means algorithm method was chosen because it has a fairly high accuracy of object size, so this algorithm is relatively more scalable and more efficient for processing large numbers of objects. In the world of education, in general, every new school year there will be something called registration of new prospective students, at the Fajar Baru Child Development Center, many prospective students are accepted from 3 years to 5 years old, therefore the authors hope that by using clustering data can easily group data so that it can make it easier to find the necessary data. By using the K-means algorithm method and using the RapidMiner application, it found 80% efficient results in grouping data.
Keywords
K-Means ; Clustering ; Prospective New Student
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 8 No. 1 (2024)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/jtik.v8i1.1426
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Kiki Setiawan
Program Studi Teknik Informatika, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Indonesia
-
-
-
Damanik, Y.F.S.Y., Sumarno, S., Gunawan, I., Hartama, D. and Kirana, I.O., 2021. Penerapan Data Mining Untuk Pengelompokan Penyebaran Covid-19 Di Sumatera Utara Menggunakan Algoritma K-Means. Jurnal Ilmu Komputer Dan Informatika, 1(2). DOI: https://doi.org/10.54082/jiki.13.
-
-
Rohmah, A., Sembiring, F. and Erfina, A., 2021, September. Implementasi Algoritma K-Means Clustering Analysis Untuk Menentukan Hambatan Pembelajaran Daring (Studi Kasus: Smk Yaspim Gegerbitung). In Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra (Vol. 1, No. 01, pp. 290-298).
-
Febrivani, E. and Winanjaya, R., 2021. Penerapan Data Mining Asosiasi Pada Persediaan Obat. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 4(1), pp.23-35. DOI: https://doi.org/10.9767/jikomsi.v4i1.141.
-
Suryadi, S., 2018. Penerapan Metode Clustering K-Means Untuk Pengelompokan Kelulusan Mahasiswa Berbasis Kompetensi. INFORMATIKA, 6(1), pp.52-72. DOI: https://doi.org/10.36987/informatika.v6i1.738.
-
Nabila, Z., Isnain, A.R., Permata, P. and Abidin, Z., 2021. Analisis data mining untuk clustering kasus covid-19 di Provinsi Lampung dengan algoritma k-means. Jurnal Teknologi Dan Sistem Informasi, 2(2), pp.100-108. DOI: https://doi.org/10.33365/jtsi.v2i2.868.
-
Prastiwi, H., Pricilia, J. and Rasywir, E., 2022. Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 2(1), pp.141-148. DOI: https://doi.org/10.33998/jakakom.2022.2.1.34.
-
Aulia, S., 2020. Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja). Djtechno: Jurnal Teknologi Informasi, 1(1), pp.1-5. DOI: https://doi.org/10.46576/djtechno.v1i1.964.
-
Sembiring, C.S.D.B., Hanum, L. and Tamba, S.P., 2022. Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Menentukan Judul Skripsi Dan Jurnal Penelitian (Studi Kasus Ftik Unpri). Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), pp.80-85. DOI: https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2393.
-
Handoko, S., Fauziah, F. and Handayani, E.T.E., 2020. Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering. Jurnal Ilmiah Teknologi dan Rekayasa, 25(1), pp.76-88. DOI: http://dx.doi.org/10.35760/tr.2020.v25i1.2677.
-
Asmana, A., Wijaya, Y.A. and Martanto, M., 2022. Clustering Data Calon Siswa Baru Menggunakan Metode K-Means Di Sekolah Menengah Kejuruan Wahidin Kota Cirebon. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), pp.552-559. DOI: https://doi.org/10.36040/jati.v6i2.5236.
-
Ningrat, D.R., Di Asih, I.M. and Wuryandari, T., 2016. Analisis cluster dengan algoritma K-Means dan Fuzzy C-Means clustering untuk pengelompokan data obligasi korporasi. Jurnal Gaussian, 5(4), pp.641-650. DOI: https://doi.org/10.14710/j.gauss.5.4.641-650.
-
-
Intel., 2023. Meningkatkan Intelijen Bisnis dengan Analisis Dalam Memori. URL: https://www.intel.co.id/content/www/id/id/artificial-intelligence/in-memory-analytics.html. Diakses Tanggal 18 Juni 2023.
-
Yulianti, Y., Utami, D.Y., Hikmah, N. and Hasan, F.N., 2019. Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Mengetahui Minat Customer Di Toko Hijab. Jurnal Pilar Nusa Mandiri, 15(2), pp.241-246. DOI: https://doi.org/10.33480/pilar.v15i2.650.
-
Chiang, H.D., Xu, T.S., Lv, X.L. and Dong, N., 2022. Hierarchical Trust-Tech-Enhanced K-Means Methods and Their Applications to Power Grids. IEEE Open Access Journal of Power and Energy, 9, pp.560-572. DOI: https://doi.org/10.1109/OAJPE.2022.3230385.
-
Purnama, J.J. and Rahayu, S., 2022. Klasifikasi konsumsi energi industri baja menggunakan teknik data mining. Jurnal Teknoinfo, 16(2), pp.395-407. DOI: https://doi.org/10.33365/jti.v16i2.1984.
-
Tamba, S.P., 2022. Penerapan Data Mining Algoritma Apriori Dalam Menentukan Stok Bahan Baku Pada Restoran Nelayan Menggunakan Metode Association Rule. Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), pp.97-102. DOI: https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2407.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.