Published: 2023-12-30
Utilizing Clustering Methods for Categorizing Delivery Requirements Based on Analysis of E-Commerce Product Data
DOI: 10.35870/ijsecs.v3i3.1969
Jumat Azzam Sugiarto, Suprapto, Muhamad Fatchan
Abstract
This study presents the implementation of the K-Means algorithm model, revealing novel insights into risk categorization in the delivery process. Two distinct clusters were identified: Cluster 1 (C0) indicating high risk, comprising 53 data points out of a dataset of 360, and Cluster 2 (C1) indicating low risk, encompassing 307 data points from the same dataset. Analysis conducted using RapidMiner Studio corroborated these findings, further delineating the cluster membership: C0 with 53 data points and C1 with 307 data points. Each cluster was characterized by optimal centroid values, recorded at 131.717 & 385.075 for C0, and 119.932 & 111.414 for C1. The model's effectiveness was assessed using the Davies-Bouldin Index, yielding a value of 0.626.
Keywords
Data Mining ; K-Means ; Clustering ; E-Commerce ; Product Analysis
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
- 
                                    Issue: Vol. 3 No. 3 (2023)
- 
                                    Section: Articles
- 
                                    Published: December 30, 2023
- 
                                  License: CC BY 4.0
- 
                                  Copyright: © 2023 Authors
- 
                                    DOI: 10.35870/ijsecs.v3i3.1969
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
 
                                 
                                 
                                 
                              Jumat Azzam Sugiarto
Informatics Engineering Study Program, Faculty of Engineering, Universitas Pelita Bangsa, Karawang Regency, West Java Province, Indonesia
Suprapto
Informatics Study Program, Faculty of Engineering, Universitas Pelita Bangsa, Karawang Regency, West Java Province, Indonesia
- 
                                            Rachmarwi, W. and ST, M., 2018. E-Commerce: Studi tentang belanja online di Indonesia. J. Manaj. Bisnis Krisnadwipayana, 6(2). DOI: https://doi.org/10.35137/jmbk.v6i2.194.
- 
                                            Rahman, A. and Suroyo, H., 2021. Analisis Data Produk Elektronik di E-Commerce dengan Metode Algoritma K-Means Menggunakan Python. Journal of Advances in Information and Industrial Technology, 3(2), pp.11-18. DOI: https://doi.org/10.52435/jaiit.v3i2.158.
- 
                                            Darmi, Y.D. and Setiawan, A., 2016. Penerapan metode clustering k-means dalam pengelompokan penjualan produk. Jurnal Media Infotama, 12(2). DOI: https://doi.org/https://doi.org/10.37676/jmi.v12i2.418.
- 
                                            
- 
                                            Hasanah, H. and Larasati, W., 2019. Pemanfaatan Data Mining untuk Mengelompokkan Kategori Penjualan Produk. Seminar Nasional GEOTIK 2019. Seminar Nasional GEOTIK 2019. Available at : https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/10824.
- 
                                            
- 
                                            Urva, G., 2016. K-Means Clustering to Design Radial Basis Function Neural Network (RBFNN) Classifiers. JURNAL UNITEK, 9(2), pp.16-24. DOI: https://doi.org/10.52072/unitek.v9i2.59.
- 
                                            
- 
                                            Dacwanda, D.O. and Nataliani, Y., 2021. Implementasi k-Means Clustering Untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan. AITI, 18(2), pp.125-138. DOI: https://doi.org/10.24246/aiti.v18i2.125-138.
- 
                                            Suhayati, E., Renali, S., Suherman, S.V., Matulessy, I.F. and Saputra, H., 2021. Perkembangan e-commerce untuk usaha kecil. JISAMAR (Journal of Information System, Applied, Management, Accounting and Research), 5(3), pp.626-631. DOI: https://doi.org/10.52362/jisamar.v5i3.477.
- 
                                            
- 
                                            Alwendi, A., 2020. Penerapan E-Commerce Dalam Meningkatkan Daya Saing Usaha. Jurnal Manajemen Bisnis, 17(3), pp.317-325. DOI: https://doi.org/10.38043/jmb.v17i3.2486.
- 
                                            Rehatalanit, Y.L.R., 2021. Peran e-commerce dalam pengembangan bisnis. Jurnal Teknologi Industri, 5. Pp. 62–69, 2021. DOI: https://doi.org/10.35968/jti.v5i0.764.
- 
                                            
- 
                                            Marpaung, J.Y., Ginting, G.L. and Silalahi, N., 2020. Penerapan Metode Fuzzy Tsukamoto Dalam Penentuan Harga Laptop Bekas. Building of Informatics, Technology and Science (BITS), 2(2), pp.115-126. DOI: https://doi.org/10.47065/bits.v2i2.310.
- 
                                            Febriantoro, W., 2018. Kajian dan strategi pendukung perkembangan e-commerce bagi UMKM Di Indonesia. Jurnal Manajerial, 17(2), p.184. DOI: https://doi.org/10.17509/Manajerial.V17i2.10441.
- 
                                            Alfajriani, A., Wati, M. and Puspitasari, N., 2020. Penerapan Metode Fuzzy Time Series Chen dan Hsu dalam Memprediksi Kunjungan Wisatawan di Museum Mulawarman. Jurnal Rekayasa Teknologi Informasi (JURTI), 4(2), pp.144-153. DOI: https://doi.org/10.30872/Jurti.V4i2.5802.
- 
                                            Puspitaningrum, S. and Setiawati, C.I., 2021. Analisis 7 Atribut e-Commerce Berbasis Website sebagai Dasar Preferensi Konsumen di Kota Bandung dengan Pendekatan Analisis Konjoin. Benefit: Jurnal Manajemen dan Bisnis (Jurnal ini Sudah Migrasi), 6(2), pp.151-167. DOI: https://doi.org/10.23917/Benefit.V6i2.14085.
- 
                                            Sihombing, L.O., Hannie, H. and Dermawan, B.A., 2021. Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. Edumatic: Jurnal Pendidikan Informatika, 5(2), pp.233-242. DOI: https://doi.org/10.29408/Edumatic.V5i2.4089.
- 
                                            Faesal, A., Muslim, A., Ruger, A.H. and Kusrini, K., 2020. Sentimen analisis pada data tweet pengguna twitter terhadap produk penjualan toko online menggunakan metode k-means. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 19(2), pp.207-213. DOI: https://doi.org/10.30812/Matrik.V19i2.640.
- 
                                            Isroni, M., Setiawati, D. and Fariyono, F., 2019. ANALISIS, PERANCANGAN & IMPLEMENTASI APLIKASI E-COMMERCE BERBASIS WEB DI TOKO ABON ROJOKOYO. JITU: Journal Informatic Technology And Communication, 3(1), pp.64-75. DOI: https://doi.org/10.36596/jitu.v3i1.75.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.
 
                             
 
                                   
 
                                     
 
                                   
 
                                     
 
                                   
 
                                   
 
                                     
 
                                     
                                           
                                             
                                                 
                                                 
                                                 
                                                 
                                                