Published: 2023-12-30

Utilizing Clustering Methods for Categorizing Delivery Requirements Based on Analysis of E-Commerce Product Data

DOI: 10.35870/ijsecs.v3i3.1969

Jumat Azzam Sugiarto, Suprapto, Muhamad Fatchan

Abstract

This study presents the implementation of the K-Means algorithm model, revealing novel insights into risk categorization in the delivery process. Two distinct clusters were identified: Cluster 1 (C0) indicating high risk, comprising 53 data points out of a dataset of 360, and Cluster 2 (C1) indicating low risk, encompassing 307 data points from the same dataset. Analysis conducted using RapidMiner Studio corroborated these findings, further delineating the cluster membership: C0 with 53 data points and C1 with 307 data points. Each cluster was characterized by optimal centroid values, recorded at 131.717 & 385.075 for C0, and 119.932 & 111.414 for C1. The model's effectiveness was assessed using the Davies-Bouldin Index, yielding a value of 0.626.

Keywords

Data Mining ; K-Means ; Clustering ; E-Commerce ; Product Analysis

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Issue Cover

Downloads

Article Metrics

If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).

Share:
Article Information

This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.

  • Issue: Vol. 3 No. 3 (2023)

  • Section: Articles

  • Published: December 30, 2023

AI Research Hub

This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.

Semantic Scholar Scite Dimensions Connected Papers

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)