Published: 2025-04-01
Public Sentiment Analysis on the Inauguration of President Prabowo Subianto on Platform X Using the Support Vector Machine (SVM) Algorithm
DOI: 10.35870/ijsecs.v5i1.3787
Rosalina Saputri, Sri Lestari
- Rosalina Saputri: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Sri Lestari: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The inauguration of President Prabowo Subianto emerged as a pivotal political event that captured significant public interest and sparked a wide array of reactions across social media, particularly on the X platform (formerly known as Twitter). This research aims to categorize and analyze public sentiment regarding this historic moment by utilizing the Support Vector Machine (SVM) algorithm, a robust machine learning approach for classification tasks. A dataset comprising 1,000 tweets was initially gathered through targeted searches related to the inauguration. Subsequently, the data underwent a rigorous preprocessing phase, which included tokenization to break down text into individual components, stopword removal to eliminate irrelevant terms, filtering to exclude special characters and noise, and Term Frequency-Inverse Document Frequency (TF-IDF) transformation to convert textual data into a numerical format suitable for algorithmic processing. After preprocessing, 909 data points were prepared for further analysis. The dataset was then divided into two subsets: 80% allocated for training the model (727 data points) and 20% reserved for testing its performance (182 data points). The results of sentiment classification indicated that, among the test data, 653 tweets conveyed a positive sentiment toward the inauguration, whereas 74 tweets expressed a negative sentiment. Performance evaluation of the model demonstrated a commendable accuracy rate of 89.82%, alongside a precision of 89.82%, a recall of 100%, and an F1-score of 94.63%. These metrics highlight the model’s strong capability to accurately discern and classify public opinions related to political developments. The elevated recall rate, in particular, signifies the model’s ability to identify all instances of positive sentiment without omission. However, the precision score suggests some room for refinement in reducing misclassifications. The findings underscore the effectiveness of the SVM algorithm in dissecting and interpreting consumer sentiment toward significant political events. This provides a reliable tool for such analyses. Moreover, the outcomes of this study are anticipated to offer a valuable reference point for stakeholders and policymakers in leveraging data-driven approaches to gauge public opinion and monitor economic trends in Indonesia. This research also lays the groundwork for future investigations into sentiment analysis within the digital sphere. This could guide strategic communications and policy formulation based on real-time societal feedback
Keywords
Sentiment Analysis ; Support Vector Machine ; Presidential Inauguration ; Public Opinion ; Social Media Analysis
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3787
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Rosalina Saputri
Informatics Engineering Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis sentimen terhadap layanan Indihome berdasarkan Twitter dengan metode klasifikasi Support Vector Machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650. https://doi.org/10.30865/mib.v4i3.2181
-
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis sentimen aplikasi Ruang Guru di Twitter menggunakan algoritma klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
-
Putra, A. R. P., Wibowo, J. S., & Semarang, J. T. L. J. (2024). Analisa sentimen Twitter terhadap capres Indonesia 2024 menggunakan metode KNN. Jurnal Elkom, 17(1), 111–119. http://journal.stekom.ac.id/index.php/elkom
-
Ramlan, R., Satyahadewi, N., & Andani, W. (2023). Analisis sentimen pengguna Twitter menggunakan Support Vector Machine pada kasus kenaikan harga BBM. Jambura Journal of Mathematics, 5(2), 431–445. https://doi.org/10.34312/jjom.v5i2.20860
-
Husada, H. C., & Paramita, A. S. (2021). Analisis sentimen pada maskapai penerbangan di platform Twitter menggunakan algoritma Support Vector Machine (SVM). Teknika, 10(1), 18–26. https://doi.org/10.34148/teknika.v10i1.311
-
Wisudawati, D. T., Utami, T. W., & Arum, P. R. (2021). Analisis sentimen terhadap dampak Covid-19 pada performa Tokopedia menggunakan Support Vector Machine. Seminar Nasional Variansi Statistika, 87–96. https://ojs.unm.ac.id/variansistatistika/article/view/19508
-
Handayani, R. N. (2021). Optimasi algoritma Support Vector Machine untuk analisis sentimen pada ulasan produk Tokopedia menggunakan PSO. Media Informatika, 20(2), 97–108. https://doi.org/10.37595/mediainfo.v20i2.59
-
Khairudin, M., Sukendar, A., & Somantri, A. (2023). Analisis sentimen film di Twitter menggunakan metode Support Vector Machine. Jurnal Sains dan Sistem Teknologi Informasi, 5(1), 97–102. https://doi.org/10.59811/sandi.v5i1.47
-
Ditami, G. R., Ripanti, E. F., & Sujaini, H. (2022). Implementasi Support Vector Machine untuk analisis sentimen terhadap pengaruh program promosi event belanja pada marketplace. Jurnal Edukasi dan Penelitian Informatika, 8(3), 508. https://doi.org/10.26418/jp.v8i3.56478
-
Safitri, T., Umaidah, Y., & Maulana, I. (2023). Analisis sentimen pengguna Twitter terhadap grup musik BTS menggunakan algoritma Support Vector Machine. Journal of Applied Informatics and Computing, 7(1), 28–35. https://doi.org/10.30871/jaic.v7i1.5039
-
Isnain, A. R., Sakti, A. I., Alita, D., & Marga, N. S. (2021). Sentimen analisis publik terhadap kebijakan lockdown pemerintah Jakarta menggunakan algoritma SVM. Jurnal Data Mining dan Sistem Informasi, 2(1), 31. https://doi.org/10.33365/jdmsi.v2i1.1021
-
Putra, D. A., & Kamayani, M. (2020). Prediksi kelulusan mahasiswa tepat waktu menggunakan metode Naive Bayes di Program Studi Teknik Informatika UHAMKA. Prosiding Seminar Nasional Teknoka, 5, 34–40. https://doi.org/10.22236/teknoka.v5i.331
-
Zelina, N., & Afiyati, A. (2024). Analisis sentimen ulasan pengguna aplikasi M-Banking menggunakan algoritma Support Vector Machine dan Decision Tree. Jurnal Linguistik Komputasional, 7(1), 31–37. https://doi.org/10.26418/jlk.v7i1.169
-
Suryana, A., Purnamasari, A. I., & Ali, I. (2024). Mengoptimalkan kepuasan pengguna: Analisis sentimen review aplikasi Grab di Indonesia. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3396–3404. https://doi.org/10.36040/jati.v8i3.9688
-
Widiarta, I. P. A. P., Dwiyansaputra, R., & Aranta, A. (2023). Analisis sentimen masyarakat terhadap kebijakan penerapan PPKM di media sosial Twitter dengan menggunakan metode XGBoost. Jurnal Teknologi Informasi, Komputer, dan Aplikasi (JTIKA), 5(2), 154–163. https://doi.org/10.29303/jtika.v5i2.342
-
Nababan, D. (2021). Sentimen analisis terhadap kebijakan pembelajaran jarak jauh selama pandemi Covid-19 menggunakan algoritma Naïve Bayes. Jurnal Teknik Informatika, 14(1), 51–56. https://doi.org/10.15408/jti.v14i1.17002
-
Mailoa, F. F. (2021). Analisis sentimen data Twitter menggunakan metode text mining tentang masalah obesitas di Indonesia. Journal of Information Systems for Public Health, 6(1), 44. https://doi.org/10.22146/jisph.44455
-
Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis sentimen terhadap penggunaan aplikasi Shopee menggunakan algoritma Support Vector Machine (SVM). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32–35. https://doi.org/10.37905/jjeee.v5i1.16830
-
Hagi, A., & Rarasati, D. B. (2024). Sentiment analysis of Sirekap application review using logistic regression algorithm. Journal of Informatics, 11(2), 55–64. https://doi.org/10.31294/inf.v11i2.22066
-
Darwis, D., Pratiwi, E. S., & Pasaribu, A. F. O. (2020). Penerapan algoritma SVM untuk analisis sentimen pada data Twitter Komisi Pemberantasan Korupsi Republik Indonesia. Edutic - Scientific Journal of Informatics Education, 7(1), 1–11. https://doi.org/10.21107/edutic.v7i1.8779
-
-
Dzukaidah, M. F., & Prasvita, D. S. (2022). Analisis sentimen program bantuan sosial tunai pada sosial media Twitter menggunakan algoritma Support Vector Machine. Prosiding Seminar Nasional, 914–924. https://conference.upnvj.ac.id/index.php/senamika/article/view/2263
-
-
Ipmawati, J., Saifulloh, S., & Kusnawi, K. (2024). Analisis sentimen tempat wisata berdasarkan ulasan pada Google Maps menggunakan algoritma Support Vector Machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 247–256. https://doi.org/10.57152/malcom.v4i1.1066
-
Khatami, M. K. (2024). Analisis sentimen twitter menggunakan naive bayes dan support vector machine terhadap kpu pada pemilihan umum presiden 2024 (Bachelor's thesis, Fakultas Sains dan Teknologi UIN Syarif HIdayatullah Jakarta). https://repository.uinjkt.ac.id/dspace/handle/123456789/81392.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.