Published: 2025-04-01
K-Means Clustering Analysis of Poverty Data in Cilacap District
DOI: 10.35870/ijsecs.v5i1.3759
Kiki Setiawan, Kastum, Yuliya Putri Pratama
- Kiki Setiawan: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Kastum: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Yuliya Putri Pratama: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Poverty stands as a complex structural obstacle within social development frameworks. The COVID-19 pandemic intensified poverty dynamics in Indonesia which saw poverty rates increase by 9.78% in March and reach 10.19% by September. Local Bureau of Statistics data shows that the poverty rate in Cilacap Regency dropped to 10.99% (around 191,000 people) in March 2024 from 10.68% (186,080 people) in March 2023. The study uses k-means clustering methodology for analysis and maps poverty-prone areas utilizing QGIS software. The analysis revealed 12 sub-districts and 14 neighborhood units (RW) alongside a single community unit (RT) that show unique poverty characteristics. The silhouette coefficient evaluation produced a 0.55 score which showed a moderate cluster structure and acceptable cluster placement. The research provides empirical evidence about poverty distribution which shows how data mining methods can enhance spatial socioeconomic studies. The study presents a detailed analysis of poverty stratification across Cilacap Regency through the application of sophisticated computational methods.
Keywords
Poverty ; Clustering ; K-Means
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3759
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Kiki Setiawan
Information Systems Study Program, Faculty of Computer Science, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
Kastum
Information Systems Study Program, Faculty of Computer Science, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
-
-
-
Anggraini, A. A., Muharom, L. A., & Si, M. (2017). Pengelompokan Kecamatan Menggunakan Metode K-Means Cluster. Universitas Muhammadiyah Jember. http://repository.unmuhjember.ac.id/591
-
-
Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, (2), 224-227. https://doi.org/10.1109/TPAMI.1979.4766909
-
Nurjannah, M., Hamdani, H., & Astuti, I. F. (2016). Penerapan Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) untuk Text Mining. Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer, 8(3), 110-113. http://dx.doi.org/10.30872/jim.v8i3.113
-
Noviyanto, N. (2020). Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia. Jurnal Khatulistiwa Informatika, 22(2), 183-188. https://doi.org/10.31294/p.v21i2
-
Noviyanto, N., & Ekasari, P. (2022). Algoritma K-Means Untuk Klasterisasi Jabatan Fungsional Dosen Pada Perguruan Tinggi Swasta Di Lingkungan LLDikti Wilayah III. Paradigma - Jurnal Komputer Dan Informatika, 24(1), 103-107. https://doi.org/10.31294/paradigma.v24i1.1112
-
Fitri, R., & Asyikin, A. N. (2015). Aplikasi penilaian ujian essay otomatis menggunakan metode cosine similarity. Poros Teknik, 7(2), 88-94. https://doi.org/10.31961/porosteknik.v7i2.218
-
Siahaan, D., & Christina, S. (2015). Using Semantic Similarity for Identifying Relevant Page Numbers for Indexed Term of Textual Book. In R. Intan, C. H. Chi, H. Palit, & L. Santoso (Eds.), Intelligence in the Era of Big Data (pp. XX-XX). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46742-8_17
-
Triharseno, W., Dhuhita, W. M. P., & Priadana, A. (2020). Sistem Pendukung Keputusan Penerimaan Programer Software House Menggunakan Metode Simple Additive Weighting (SAW). JURNAL PILAR TEKNOLOGI Jurnal Ilmiah Ilmu Ilmu Teknik, 5(1). https://doi.org/10.33319/piltek.v5i1.52
-
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., ... & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14, 1-37. https://doi.org/10.1007/s10115-007-0114-2
-
Alsharkawi, A., Al-Fetyani, M., Dawas, M., Saadeh, H., & Yaman, M. (2021). Poverty classification using machine learning: The case of Jordan. Sustainability, 13(3), 1412. https://doi.org/10.3390/su13031412
-
Li, G., Cai, Z., Qian, Y., & Chen, F. (2021). Identifying urban poverty using high-resolution satellite imagery and machine learning approaches: Implications for housing inequality. Land, 10(6), 648. https://doi.org/10.3390/land10060648
-
Lopes, M., Silva, L., Silva, S., Lima, W., Barbosa, R., & Fernandes, M. (2023). Self-organising maps applied to the stratification of preterm birth risk in Brazil with socioeconomic data. https://doi.org/10.21203/rs.3.rs-3676862/v1
-
Gao, C., Fei, C., McCarl, B., & Leatham, D. (2020). Identifying vulnerable households using machine learning. Sustainability, 12(15), 6002. https://doi.org/10.3390/su12156002
-
Ramadhan, R., Wijayanto, A., & Pramana, S. (2023). Geospatial big data approaches to estimate granular level poverty distribution in East Java, Indonesia using machine learning and deep learning regressions. Proceedings of the International Conference on Data Science and Official Statistics, 2023(1), 186-200. https://doi.org/10.34123/icdsos.v2023i1.359
-
Nofriani, N. (2020). Machine learning application for classification prediction of household's welfare status. Jitce (Journal of Information Technology and Computer Engineering), 4(2), 72-82. https://doi.org/10.25077/jitce.4.02.72-82.2020
-
Novitasari, M., & Iskandar, D. (2022). Spatial spillover impact of sectoral government expenditure on poverty alleviation in South Kalimantan Province. The Journal of Indonesia Sustainable Development Planning, 3(3), 207-221. https://doi.org/10.46456/jisdep.v3i3.361
-
Nugraha, A., Prayitno, G., Nandhiko, L., & Nasution, A. (2022). Socioeconomic conditions on poverty levels a case study: Central Java Province and Yogyakarta in 2016. Revista De Economia E Sociologia Rural, 60(1). https://doi.org/10.1590/1806-9479.2021.233206
-
Hidayati, S., Darmaliana, A., & Riski, R. (2022). Comparison of k-means, fuzzy c-means, fuzzy gustafson kessel, and DBSCAN for village grouping in Surabaya based on poverty indicators. Jurnal Pendidikan Matematika (Kudus), 5(2), 185. https://doi.org/10.21043/jpmk.v5i2.16552
-
Fitriana, I., & Mabruri, M. (2022). Cluster analysis of COVID-19 impact on poverty in Indonesia using self-organizing map algorithm. Jurnal Aplikasi Statistika & Komputasi Statistik, 14(1), 85-94. https://doi.org/10.34123/jurnalasks.v14i1.389
-
Erda, G., Gunawan, C., & Erda, Z. (2023). Grouping of poverty in Indonesia using K-means with silhouette coefficient. Parameter Journal of Statistics, 3(1), 1-6. https://doi.org/10.22487/27765660.2023.v3.i1.16435
-
Riyono, J., & Pujiastuti, C. (2022). Simulation of the K-means clustering algorithm with the elbow method in making clusters of provincial poverty levels in Indonesia. Jurnal Matematika Mantik, 8(2), 113-123. https://doi.org/10.15642/mantik.2022.8.2.113-123
-
Ardini, A., & Sirait, H. (2023). Comparison of K-medoids and CLARA algorithm in poverty clustering analysis in Indonesia. Operations Research International Conference Series, 4(4), 141-148. https://doi.org/10.47194/orics.v4i4.279
-
Poerwanto, B. (2023). K-means – resilient backpropagation neural network in predicting poverty levels. Jurnal Varian, 6(2), 157-166. https://doi.org/10.30812/varian.v6i2.2756
-
Yuningsih, I., & Aryani, M. (2024). Comparison of methods for applying the data mining clustering concept to Banten provincial government poverty data: Systematic review. Jurnal Ilmu Sosial Mamangan, 13(1), 121-134. https://doi.org/10.22202/mamangan.v13i1.8074
-
Fitriana, I., & Mabruri, M. (2022). Cluster analysis of COVID-19 impact on poverty in Indonesia using self-organizing map algorithm. Jurnal Aplikasi Statistika & Komputasi Statistik, 14(1), 85-94. https://doi.org/10.34123/jurnalasks.v14i1.389
-
Rahman, M., Sani, N., Hamdan, R., Othman, Z., & Bakar, A. (2021). A clustering approach to identify multidimensional poverty indicators for the bottom 40 percent group. Plos One, 16(8), e0255312. https://doi.org/10.1371/journal.pone.0255312
-
Alfiah, F., Almadayani, A., Farizi, D., & Widodo, E. (2021). Analisis clustering K-medoids berdasarkan indikator kemiskinan di Jawa Timur tahun 2020. Jurnal Ilmiah Sains, 22(1), 1. https://doi.org/10.35799/jis.v22i1.35911.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.