Published: 2025-04-14
Perbandingan Metode K-Means dan Hierarchical Clustering dalam Pengelompokan Data Penduduk Miskin di Kabupaten Cianjur
DOI: 10.35870/ljit.v3i1.4028
Ihsan Pratama Putra, Avram Fadhillah
- Ihsan Pratama Putra: STMIK-IM , Indonesia
- Avram Fadhillah: STMIK-IM , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Penelitian ini membahas perbandingan antara dua metode klasterisasi, yaitu K-Means dan Hierarchical Clustering, dalam mengelompokkan data penduduk miskin di Kabupaten Cianjur pada periode 2018-2021. K-Means digunakan untuk membagi data ke dalam jumlah klaster tertentu yang telah ditentukan sebelumnya, sementara Hierarchical Clustering memungkinkan pembentukan klaster berbasis hierarki tanpa memerlukan jumlah klaster awal. Hasil analisis menunjukkan bahwa K-Means memiliki keunggulan dalam hal kecepatan dan efisiensi, terutama untuk dataset besar dengan distribusi data yang seragam. Di sisi lain, Hierarchical Clustering lebih efektif dalam mengungkap pola yang kompleks dan menawarkan visualisasi dendrogram untuk analisis mendalam. Dengan menggunakan kedua metode ini, pengambilan keputusan terkait kebijakan sosial dapat lebih terarah, berdasarkan analisis data yang akurat dan mendalam. Penelitian ini memberikan kontribusi penting untuk mendukung program pengentasan kemiskinan secara lebih optimal.
Keywords
Clustering ; Hierarchical Clustering ; K-Means ; Kemiskinan ; Pengambilan Kebijakan
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the LANCAH: Jurnal Inovasi dan Tren. The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 3 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ljit.v3i1.4028
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Amaliyah, S., & Rianti Agustini, S. (n.d.). Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM) Penerapan Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan PKH Menggunakan Metode Clustering K-Means Pada Desa Kuala Dendang. http://ejournal.unama.ac.id/index.php/jakakom
-
Carr-Hill, R. (2015). Non-Household Populations: Implications for Measurements of Poverty Globally and in the UK. Journal of Social Policy, 44, 255–275. https://doi.org/10.1017/S0047279414000907
-
Edmiston, D. (2023). Who counts in poverty research? The Sociological Review. https://doi.org/10.1177/00380261231213233
-
-
Klasen, S. (1997). Poverty, Inequality and Deprivation in South Africa: An Analysis of the 1993 SALDRU Survey. Social Indicators Research, 41, 51–94. https://doi.org/10.1007/978-94-009-1479-7_3
-
Mongi, C., Langi, Y., Montolalu, C., & Nainggolan, N. (2019). Comparison of hierarchical clustering methods (case study: data on poverty influence in North Sulawesi). IOP Conference Series: Materials Science and Engineering, 567. https://doi.org/10.1088/1757-899X/567/1/012048
-
Novitasari, N., Nuris, N. D., & Herdiana, R. (2023). Jurnal Informatika Terpadu PENERAPAN ALGORITMA K-MEANS UNTUK CLUSTERING DATA JUMLAH PENDUDUK MISKIN BERDASARKAN KOTA/KABUPATEN DI JAWA BARAT MENGGUNAKAN RAPIDMINER. Jurnal Informatika Terpadu, 9(1), 68–73. https://journal.nurulfikri.ac.id/index.php/JIT
-
Santoso, B., Wijayanto, H., Notodiputro, K., & Sartono, B. (2018). A Comparative Study of Synthetic Over-sampling Method to Improve the Classification of Poor Households in Yogyakarta Province. IOP Conference Series: Earth and Environmental Science, 187. https://doi.org/10.1088/1755-1315/187/1/012048
-
Sonang, S., Purba, A. T., & Pardede, F. O. I. (2019). PENGELOMPOKAN JUMLAH PENDUDUK BERDASARKAN KATEGORI USIA DENGAN METODE K-MEANS. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 2(2), 166. https://doi.org/10.37600/tekinkom.v2i2.115
-
Sudibyo, N. A., Iswardani, A., Sari, K., Suprihatiningsih, S., Duta, U., & Surakarta, B. (n.d.). PENERAPAN DATA MINING PADA JUMLAH PENDUDUK MISKIN DI INDONESIA. 1(3), 2020. https://doi.org/10.46306/lb.v1i3
-
Tarigan, N. M. Br., Tarigan, S. E. Br., & Simatupang, A. (2023). Implementation of Data Mining in Grouping Data of the Poor Using the K-Means Method. Journal of Computer Networks, Architecture and High Performance Computing. https://doi.org/10.47709/cnahpc.v5i2.2625

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.