Published: 2025-01-01
Efektivitas Penggunaan Ruang Warna HSV untuk Klasifikasi Daging Sapi Segar dan Busuk dalam Industri Pangan
DOI: 10.35870/jtik.v9i1.3129
Dadang Iskandar Mulyana, Veri Arinal, Feri Akbarulloh
- Dadang Iskandar Mulyana: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Affiliation name not available , Indonesia
- Veri Arinal: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Affiliation name not available , Indonesia
- Feri Akbarulloh: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Affiliation name not available , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Beef is a source of animal protein which is very important in the human diet. The quality of beef determines the nutritional value and taste of the processed meat product. However, the quality of beef can decrease over time, especially if it is not stored properly. Therefore, identifying the condition of beef is crucial to ensure that consumers get safe and quality products. The use of the HSV (Hue, Saturation, Value) color space for beef classification is an interesting method to research. The HSV color space is closer to human perception of color compared to the RGB color space, making it more effective for image analysis in the context of visual quality assessment of meat. In this study, researchers used HSV space extraction to classify fresh beef and bad beef. This research aims to develop a method for classifying fresh, medium and rotten beef using the HSV color space. This research produces accurate extraction results with appropriate classification of fresh and bad beef.
Keywords
Hsv Color Space ; Fresh and Bad Meat ; Classification
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 1 (2025)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/jtik.v9i1.3129
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Dadang Iskandar Mulyana
Program Studi Teknik Informatika, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Indonesia.
Veri Arinal
Program Studi Teknik Informatika, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibukota Jakarta, Indonesia.
-
Amalia, V. F., & Dewi, R. R. (2024). PENILAIAN KESEGARAN IKAN DENGAN METODE K-NEAREST NEIGHBOR DAN PENGOLAHAN CITRA DIGITAL. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 7823-7829. DOI: https://doi.org/10.36040/jati.v8i4.10441.
-
-
Arfika, D. D., Syafitri, I., & Pahutar, P. H. (2024). SISTEM PENDETEKSI KEMATANGAN BUAH ALPUKAT DENGAN TRANSFORMASI RUANG WARNA HSI. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 6061-6066. DOI: https://doi.org/10.36040/jati.v8i4.10117.
-
Bugis, S. A., Cakra, C., Islah, A. M., Said, M. S., Suarna, D., & Said, M. S. (2024). Implementasi Algoritma K-Nearest Neighbor (K-Nn) Dalam Perancangan Alat Pendeteksi Tingkat Kesegaran Daging. Simtek: jurnal sistem informasi dan teknik komputer, 9(1), 55-61. DOI: https://doi.org/10.51876/simtek.v9i1.376.
-
-
-
Hadinegoro, A., & Rizaldilhi, D. A. (2021). Pengaruh HSV pada pengolahan citra untuk kematangan buah cabai. Building of Informatics, Technology and Science (BITS), 3(3), 155–163. https://doi.org/10.47065/bits.v3i3.1020.
-
-
-
Pah, N. E. R., Mola, S. A. S., & Mauko, A. Y. (2021). Ekstraksi ciri warna HSV dan ciri bentuk moment invariant untuk klasifikasi buah apel merah. Jurnal Komputer dan Informatika, 9(2), 142–153. https://doi.org/10.35508/jicon.v9i2.5043.
-
Saputra, Y. D., & Setiawan, F. B. (2023). Penerapan deteksi garis pada AGV menggunakan metode HSV. Transmisi: Jurnal Ilmiah Teknik Elektro, 25(4), 172–178. https://doi.org/10.14710/transmisi.25.4.172-178.
-
Yohannes, Y., Udjulawa, D., & Sariyo, T. I. (2021). Klasifikasi jenis jamur menggunakan SVM dengan fitur HSV dan HOG. PETIR, 15(1), 113–120. DOI: https://doi.org/10.33322/petir.v15i1.1101.
-

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.