Published: 2024-04-01
Analisis Sentimen Ulasan Aplikasi Smart Campus Unisbank di Google Playstore Menggunakan Algoritma Naive Bayes
DOI: 10.35870/jtik.v8i2.1882
Dwi Rahma Firmansyah, Endang Lestariningsih
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This study explores sentiment analysis on SmartCampus Unisbank application reviews on Google Play Store using the Naive Bayes classification method. Through Python programming language and web scraping techniques employing the google-play-scraper library, review data was automatically obtained and organized in CSV format. Text preprocessing techniques such as case folding, stopwords removal, tokenization, and stemming were applied to ensure accurate analysis. The data was divided into training and testing sets, and TF-IDF (Term Frequency-Inverse Document Frequency) was used for feature extraction. A Naive Bayes model was constructed and evaluated, achieving an accuracy of 84.6%. While the model demonstrated proficiency in identifying negative sentiments with 100% precision, it requires refinement for recognizing positive sentiments. These findings provide valuable insights for SmartCampus Unisbank developers to understand user perspectives and improve application quality
Keywords
Naive Bayes ; Python ; Smartcampus ; Preprocessing ; TF-IDF
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 8 No. 2 (2024)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/jtik.v8i2.1882
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Dwi Rahma Firmansyah
Program Studi Teknik Informatika, Fakultas Teknologi Informasi, Universitas Stikubank, Kota Semarang, Provinsi Jawa Tengah, Indonesia
-
-
Areni, I. S., Palantei, E., Suyuti, A., Baharuddin, M., Samman, F. A., & Umraeni, A. E. (2019). Pengembangan dan implementasi smart campus berbasis smart card di Institut Agama Islam Negeri Bone. JURNAL TEPAT: Teknologi Terapan untuk Pengabdian Masyarakat, 2(1), 1-7. DOI: https://doi.org/10.25042/jurnal_tepat.v2i1.51.
-
-
Wisnu, G. R. G., Muttaqi, A. R., Santoso, A. B., Putra, P. K., & Budi, I. (2020, October). Sentiment analysis and topic modelling of 2018 central java gubernatorial election using twitter data. In 2020 International Workshop on Big Data and Information Security (IWBIS) (pp. 35-40). IEEE. DOI: 10.1109/IWBIS50925.2020.9255583.
-
Fitriyyah, S. N. J., Safriadi, N., & Pratama, E. E. (2019). Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 5(3), 279-285. DOI: http://dx.doi.org/10.26418/jp.v5i3.34368.
-
-
Hendriyanto, M. D., Ridha, A. A., & Enri, U. (2022). Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine. INTECOMS: Journal of Information Technology and Computer Science, 5(1), 1-7. DOI: https://doi.org/10.31539/intecoms.v5i1.3708
-
Tanggraeni, A. I., & Sitokdana, M. N. (2022). Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(2), 785-795. DOI: https://doi.org/10.35957/jatisi.v9i2.1835.
-
-
Apriani, R., & Gustian, D. (2019). Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54-62. DOI: https://doi.org/10.52005/rekayasa.v6i1.86.
-
-
-
Yusnitasari, T., Ikasari, D., Pratiwi, E. E. S., & Ramdani, N. S. (2017, November). Analisis Sentimen Terhadap Review Restoran Fish Streat pada Aplikasi Zomato Menggunakan Stemming Nazief Adriani dan Naive Bayes Classifier. In Prosiding Sentrinov (Seminar Nasional Terapan Riset Inovatif) (Vol. 3, No. 1, pp. EB163-174).
-
Kosasih, R., & Alberto, A. (2021). Analisis Sentimen Produk Permainan Menggunakan Metode TF-IDF Dan Algoritma K-Nearest Neighbor. InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan, 6(1), 134-139. DOI: https://doi.org/10.30743/infotekjar.v6i1.3893.
-

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.