Perbandingan Metode K-Means dan Hierarchical Clustering dalam Pengelompokan Data Penduduk Miskin di Kabupaten Cianjur
DOI:
https://doi.org/10.35870/ljit.v3i1.4028Keywords:
Clustering, Hierarchical Clustering, K-Means, Kemiskinan, Pengambilan KebijakanAbstract
Penelitian ini membahas perbandingan antara dua metode klasterisasi, yaitu K-Means dan Hierarchical Clustering, dalam mengelompokkan data penduduk miskin di Kabupaten Cianjur pada periode 2018-2021. K-Means digunakan untuk membagi data ke dalam jumlah klaster tertentu yang telah ditentukan sebelumnya, sementara Hierarchical Clustering memungkinkan pembentukan klaster berbasis hierarki tanpa memerlukan jumlah klaster awal. Hasil analisis menunjukkan bahwa K-Means memiliki keunggulan dalam hal kecepatan dan efisiensi, terutama untuk dataset besar dengan distribusi data yang seragam. Di sisi lain, Hierarchical Clustering lebih efektif dalam mengungkap pola yang kompleks dan menawarkan visualisasi dendrogram untuk analisis mendalam. Dengan menggunakan kedua metode ini, pengambilan keputusan terkait kebijakan sosial dapat lebih terarah, berdasarkan analisis data yang akurat dan mendalam. Penelitian ini memberikan kontribusi penting untuk mendukung program pengentasan kemiskinan secara lebih optimal.
Downloads
References
Amaliyah, S., & Rianti Agustini, S. (n.d.). Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM) Penerapan Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan PKH Menggunakan Metode Clustering K-Means Pada Desa Kuala Dendang. http://ejournal.unama.ac.id/index.php/jakakom
Carr-Hill, R. (2015). Non-Household Populations: Implications for Measurements of Poverty Globally and in the UK. Journal of Social Policy, 44, 255–275. https://doi.org/10.1017/S0047279414000907
Edmiston, D. (2023). Who counts in poverty research? The Sociological Review. https://doi.org/10.1177/00380261231213233
FullBook Pengenalan Data Mining. (n.d.).
Klasen, S. (1997). Poverty, Inequality and Deprivation in South Africa: An Analysis of the 1993 SALDRU Survey. Social Indicators Research, 41, 51–94. https://doi.org/10.1007/978-94-009-1479-7_3
Mongi, C., Langi, Y., Montolalu, C., & Nainggolan, N. (2019). Comparison of hierarchical clustering methods (case study: data on poverty influence in North Sulawesi). IOP Conference Series: Materials Science and Engineering, 567. https://doi.org/10.1088/1757-899X/567/1/012048
Novitasari, N., Nuris, N. D., & Herdiana, R. (2023). Jurnal Informatika Terpadu PENERAPAN ALGORITMA K-MEANS UNTUK CLUSTERING DATA JUMLAH PENDUDUK MISKIN BERDASARKAN KOTA/KABUPATEN DI JAWA BARAT MENGGUNAKAN RAPIDMINER. Jurnal Informatika Terpadu, 9(1), 68–73. https://journal.nurulfikri.ac.id/index.php/JIT
Santoso, B., Wijayanto, H., Notodiputro, K., & Sartono, B. (2018). A Comparative Study of Synthetic Over-sampling Method to Improve the Classification of Poor Households in Yogyakarta Province. IOP Conference Series: Earth and Environmental Science, 187. https://doi.org/10.1088/1755-1315/187/1/012048
Sonang, S., Purba, A. T., & Pardede, F. O. I. (2019). PENGELOMPOKAN JUMLAH PENDUDUK BERDASARKAN KATEGORI USIA DENGAN METODE K-MEANS. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 2(2), 166. https://doi.org/10.37600/tekinkom.v2i2.115
Sudibyo, N. A., Iswardani, A., Sari, K., Suprihatiningsih, S., Duta, U., & Surakarta, B. (n.d.). PENERAPAN DATA MINING PADA JUMLAH PENDUDUK MISKIN DI INDONESIA. 1(3), 2020. https://doi.org/10.46306/lb.v1i3
Tarigan, N. M. Br., Tarigan, S. E. Br., & Simatupang, A. (2023). Implementation of Data Mining in Grouping Data of the Poor Using the K-Means Method. Journal of Computer Networks, Architecture and High Performance Computing. https://doi.org/10.47709/cnahpc.v5i2.2625
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ihsan Pratama Putra, Avram Fadhillah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.