Published: 2025-04-01
Sentiment Analysis of the TikTok Tokopedia Seller Center Application Using Support Vector Machine (SVM) and Naive Bayes Algorithms
DOI: 10.35870/ijsecs.v5i1.3463
Faddilla Aulia Dara, Irfan Pratama
Abstract
The TikTok Tokopedia Seller Center application is a collaboration between TikTok and Tokopedia designed to help sellers manage their stores and boost sales. Despite offering various features, complaints about poor user experience often appear in reviews on the Google Play Store. This study aims to analyze user sentiment towards the TikTok Tokopedia Seller Center application using a dataset of 2,000 reviews, using the Support Vector Machine (SVM) and Naive Bayes algorithms to classify positive, negative, and neutral sentiments. In addition, this study also attempts to compare the effectiveness of these algorithms in sentiment analysis and evaluate the performance of two weighting methods: TF-IDF and Term Presence. The dataset used was taken by scraping review data on the Google Play Store in Python, as many as 2000 user review datasets. This study found 1,171 negative sentiments, 735 positive sentiments, and 94 neutral sentiments. The results showed that the accuracy of SVM (0.81 and 0.78) was higher than Naive Bayes (0.69 and 0.75). It is hoped that this research can help potential users to find user sentiment towards the application and provide valuable information for application developers to understand user needs and expectations so that developers can improve application features more appropriately and effectively
Keywords
Google Play Store ; Naive Bayes ; Sentiment Analysis ; Support Vector Machine ; TikTok Tokopedia Seller Center
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Metrics
- Views0
- Downloads0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: April 1, 2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3463
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.




-
Tian, W., Xiao, Y., & Xu, L. (2021). What XiaoHongShu users care about: An analysis of online review comments. Retrieved from https://www.kuchuan.com
-
Hidayat, W. A., & Nastiti, V. R. S. (2024). Perbandingan kinerja pre-trained IndoBERT-base dan IndoBERT-lite pada klasifikasi sentimen ulasan Tiktok Tokopedia Seller Center dengan model IndoBERT. Jurnal Sistem Informasi (JSiI), 11(2), 13-20. https://doi.org/10.30656/jsii.v11i2.9168
-
Tanniewa, A. M., Hamrul, H., & Sarina. (2023). Implementasi algoritma Support Vector Machine terhadap analisis sentimen penggunaan Aplikasi Tiktok Shop Seller Center. In Seminar Nasional Teknologi Informasi dan Komputer. https://jurnal.ftkom.uncp.ac.id/index.php/semantik/article/view/41
-
Wijaya, M., T. L. P. A. S. (2024). Penerapan algoritma Naive Bayes dan KNN dalam menganalisis sentimen Aplikasi Tiktok Shop Seller Center berdasarkan review Google Playstore. Scientific Student Journal for Information, Technology and Science, 5(2). https://doi.org/10.30865/mahasiswa.v5i2.1014
-
Muttaqin, M. N., & Kharisudin, I. (2021). Analisis sentimen aplikasi Gojek menggunakan Support Vector Machine dan K Nearest Neighbor. UNNES Journal of Mathematics, 10(2), 22-27. https://doi.org/10.15294/ujm.v10i2.48474
-
Indriyani, F. A., Fauzi, A., & Faisal, S. (2023). Analisis sentimen aplikasi TikTok menggunakan algoritma naïve bayes dan support vector machine. TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, 10(2), 176-184. https://doi.org/10.37373/tekno.v10i2.419
-
Atmajaya, D., Febrianti, A., & Darwis, H. (2023). Metode SVM dan Naive Bayes untuk analisis sentimen ChatGPT di Twitter. The Indonesian Journal of Computer Science, 12(4). https://doi.org/10.33022/ijcs.v12i4.3341
-
Saputra, R., & Hasan, F. N. (2024). Analisis sentimen terhadap program makan siang & susu gratis menggunakan algoritma Naive Bayes. Jurnal Teknologi dan Sistem Informasi Bisnis, 6(3), 411-419. https://doi.org/10.47233/jteksis.v6i3.1378
-
Lubis, A. Y., & Setyawan, M. Y. H. (2024). Analisis sentimen terhadap aplikasi Pospay menggunakan algoritma Support Vector Machine dan Naive Bayes. Jurnal Teknologi dan Sistem Informasi Bisnis, 6(3), 514-521. https://doi.org/10.47233/jteksis.v6i3.1310
-
Mustopa, A., Hermanto, A., Pratama, E. B., Hendini, A., & Risdiansyah, D. (2020). Analysis of user reviews for the Peduli Lindungi application on Google Play using the Support Vector Machine and Naive Bayes Algorithm Based on Particle Swarm Optimization. In 2020 5th International Conference on Informatics and Computing (ICIC). https://doi.org/10.1109/ICIC50835.2020.9288655
-
Styawati, S., Isnain, A. R., Hendrastuty, N., & Andraini, L. (2021). Comparison of Support Vector Machine and Naïve Bayes on Twitter data sentiment analysis. Jurnal Informatika: Jurnal Pengembangan IT (JPIT), 6(1), 56-60. https://doi.org/10.30591/jpit.v6i1.3245
-
Ardianto, R., Rivanie, T., Alkhalifi, Y., Septia Nugraha, F., & Gata, W. (2020). Sentiment analysis on e-sports for education curriculum using Naive Bayes and Support Vector Machine. Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), 13(2). https://doi.org/10.21609/jiki.v13i2.885
-
Mukodimah, S., Muslihudin, M., Rohmadi Mustofa, D., Susianto, D., Bakti Nusantara, I., & Pringsewu, S. (2022). Naive Bayes classifier method analysis and Support Vector Machine (SVM) student graduation prediction. Neuroquantology, 20(12), 3522-3533. https://doi.org/10.14704/NQ.2022.20.12.NQ77360
-
Praneswara, A. O., & Cahyono, N. (2023). Analisis sentimen ulasan Aplikasi TikTok Shop Seller Center di Google Playstore menggunakan Algoritma Naive Bayes. The Indonesian Journal of Computer Science, 12(6). https://doi.org/10.33022/ijcs.v12i6.3473
-
Ainunnisa, I. R., & Sulastri, S. (2023). Analisis sentimen Aplikasi Tiktok dengan Metode Support Vector Machine (SVM), Logistic Regression dan Naive Bayes. Jurnal Teknologi Sistem Informasi dan Aplikasi, 6(3), 423-430. https://doi.org/10.32493/jtsi.v6i3.31076
-
Salma, A., & Silfianti, W. (2021). Sentiment analysis of user review on COVID-19 information applications using Naïve Bayes Classifier, Support Vector Machine, and K-Nearest Neighbors. International Research Journal of Advanced Engineering and Science, 6(4), 158-162. Retrieved from http://irjaes.com/wp-content/uploads/2021/11/IRJAES-V6N4P61Y21.pdf
-
Suryani, S., Fayyad, M. F., Savra, D. T., Kurniawan, V., & Estanto, B. H. (2023). Sentiment analysis of towards electric cars using Naive Bayes Classifier and Support Vector Machine Algorithm. Public Research Journal of Engineering, Data Technology and Computer Science, 1(1), 1-9. https://doi.org/10.57152/predatecs.v1i1.814
-
-
Hasibuan, S. S., Angraini, A., Saputra, E., & Megawati, M. (2024). Sentimen analisis terhadap fitur TikTok Shop menggunakan Naive Bayes dan K-Nearest Neighbor. Jurnal Media Informatika Budidarma, 8(1), 303. https://doi.org/10.30865/mib.v8i1.7238
-
Fahmi, R. N., Nursyifa, N., & Primajaya, A. (2021). Analisis sentimen pengguna Twitter terhadap kasus penembakan Laskar FPI oleh Polri dengan metode Naive Bayes Classifier. JIKO (Jurnal Informatika dan Komputer), 5(2), 61-66. http://dx.doi.org/10.26798/jiko.v5i2.437
-
Nugraha, P., Matheos Sarimole, F., & Studi Sistem, P. (2025). Analisis sentimen kepuasan publik terhadap masa kepemimpinan Shin Tae Yong menggunakan algoritma Naïve Bayes. Jurnal Teknologi Informasi dan Komunikasi, 9(1), 3020. https://doi.org/10.35870/jtik.v9i1.3020
-
-
Permana, H., Chrisnanto, Y. H., Ashaury Informatika, H., Jenderal Achmad Yani Cimahi Jl Terusan Jend Sudirman, U., Cimahi Sel, K., Cimahi, K., & Barat, J. (2023). Analisis sentimen terhadap bakal calon presiden 2024 dengan algoritma multinomial Naive Bayes dan Oversampling SMOTE. Jurnal Mahasiswa Teknik Informatika, 7(5). https://ejournal.itn.ac.id/index.php/jati/article/view/7309
-
Musfiroh, D., Khaira, U., Utomo, P. E. P., & Suratno, T. (2021). Analisis sentimen terhadap perkuliahan daring di Indonesia dari Twitter dataset menggunakan InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 24-33. https://doi.org/10.57152/malcom.v1i1.20
-
Triyanti. (2023). Analisis sentimen pengguna aplikasi belajar bahasa menggunakan algoritma Naïve Bayes. Unpublished thesis, Universitas Teknokrat Indonesia. Retrieved from http://repository.teknokrat.ac.id/4834/1/skripsi19311170.pdf
-
Salma, A., & Silfianti, W. (2021). Sentiment analysis of user reviews on COVID-19 information applications using Naïve Bayes Classifier, Support Vector Machine, and K-Nearest Neighbor. International Research Journal of Advanced Engineering and Science, 6(4), 158-162. Retrieved from http://irjaes.com/wp-content/uploads/2021/11/IRJAES-V6N4P61Y21.pdf
-
-
-
Pasaribu, N. A., & Sriani. (2023). The Shopee application user reviews sentiment analysis employing Naïve Bayes Algorithm. International Journal Software Engineering and Computer Science (IJSECS), 3(3), 194-204. https://doi.org/10.35870/ijsecs.v3i3.1699
-
Apriani, E., Oktavianalisti, F., Monasari, L. D. H., Winarni, I., & Hanif, I. F. (2024). Analisis sentimen penggunaan TikTok sebagai media pembelajaran menggunakan Algoritma Naïve Bayes Classifier. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(3), 1160-1168. https://doi.org/10.57152/malcom.v4i3.1482
-
Wahyuni, W. (2022). Analisis sentimen terhadap opini feminisme menggunakan Metode Naive Bayes. Jurnal Informatika Ekonomi Bisnis, 4(4), 148-153. https://doi.org/10.37034/infeb.v4i4.162
-
Bhuiyan, R. J., Akter, S., Uddin, A., Shak, M. S., Islam, M. R., Rishad, S. M. S. I., Sultana, F., & Hasan-Or-Rashid, Md. (2024). Sentiment analysis of customer feedback in the banking sector: A comparative study of machine learning models. The American Journal of Engineering and Technology, 6(10), 54-66. https://doi.org/10.37547/tajet/Volume06Issue10-07
-
Santoso, D. P., & Wibowo, W. (2022). Analisis sentimen ulasan Aplikasi Buzzbreak menggunakan Metode Naïve Bayes Classifier pada Situs Google Play Store. Jurnal Sains dan Seni ITS, 11(2), D190-D196. https://ejurnal.its.ac.id/index.php/sains_seni/article/download/72534/7063.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.