Design and Development of a Data Warehouse for PT. CMS Using the Nine-Step Kimball Method
Main Article Content
Abstract
A fully automated and structured management system in today's era is very important to support more efficient use when making decisions in a company. PT Cipta Mulia Surabaya, a company involved in the construction, mechanical, and purchasing sectors, is also one of the companies that has a management system to manage company data. Since the establishment of this company, the management system used has not used technology that has been developed in the current era or the management system is still done semi-manually, so that it can cause less than optimal in making a decision or planning. To overcome this problem, researchers created an application entitled Data Warehouse Design and utilized the Nine Step Kimball method which consists of 9 (nine) stages. With this Data Warehouse Design and Construction, it is hoped that it can help management in decision making or simplify the planning process. In the process of creating this Data Warehouse Design and Construction system, the author uses a software that functions as a local server so that it can run an application that is being developed, the author himself uses XAMPP software as a local server, in addition to being a local server, XAMPP can also manage databases. While the software for the text editor, the author uses Visual Studio Code. It is expected that with this application system, the company's performance can be optimized
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.
How to Cite
References
Pratama, I. P. A. E., & Pradipta, I. G. A. (2020). Desain dan implementasi data warehouse untuk prediksi penjualan produk pada Toko Mekarsari. Jurnal Teknologi Informasi dan Terapan, 5(1), 65-72. https://doi.org/10.25047/jtit.v5i1.81
Hariyanto, B., & MT, I. (2004). Sistem manajemen basis data. Bandung: Informatika.
Jogiyanto, H. M. (2019). Sistem teknologi informasi. Yogyakarta : Andi.
Sihotang, H. T. (2019). Sistem informasi pengagendaan surat berbasis web pada Pengadilan Tinggi Medan. Journal of Science and Social Research, 3(1), 6-9. https://doi.org/10.31227/osf.io/bhj5q
Harumy, T. H. F. (2018). Sistem informasi absensi pada PT. Cospar Sentosa Jaya menggunakan bahasa pemprograman Java. Jurnal Teknik dan Informatika, 5(1), 63-70.
Connolly, T. M., & Begg, C. E. (2022). A practical approach to design, implementation, and management (4th ed.). Massachusetts.
Suni, E. K. (2021). Analisis dan perancangan data warehouse untuk mendukung keputusan redaksi televisi menggunakan metode nine-step Kimball. Jurnal Teknik Informatika, 11(2), 197-206. https://doi.org/10.15408/jti.v11i2.8560
Hasan, F. N., & Febriandirza, A. (2021). Perancangan data warehouse untuk data penelitian di perguruan tinggi menggunakan pendekatan nine steps methodologhy. Pseudocode, 8(1), 49-57. https://doi.org/10.33369/pseudocode.8.1.49-57
Risyad, S. A. (2023). Pengertian, karakteristik, dan arsitektur data warehouse. Dibimbing. https://dibimbing.id/blog/detail/pengertian-karakteristik-dan-arsitektur-data-warehouse (Accessed on June 7, 2024)
Darudiato, S. (2020). Perancangan data warehouse penjualan untuk mendukung kebutuhan informasi eksekutif Cemerlang Skin Care. Seminar Nasional Informatika, 2020(semnasIF), 350-359.
Akbar, M., & Rahmanto, Y. (2020). Desain data warehouse penjualan menggunakan nine step methodology untuk business intelegency pada PT Bangun Mitra Makmur. Jurnal Informatika dan Rekayasa Perangkat Lunak, 1(2), 137-146. https://doi.org/10.33365/jatika.v1i2.331
Kurniasari, D. (2022). SQL Server untuk data analysis. DQLab. https://dqlab.id/apa-itu-sql-server-yuk-kenali-fungsinya-untuk-data-analysis (Accessed on June 9, 2024)
Andriani, K. W. (2021). Pengaruh nilai pelanggan dan kualitas layanan terhadap kepuasan pelanggan pada PT Pos Indonesia (Persero) Cabang Singaraja. Ekuitas Jurnal Pendidikan Ekonomi, 4(1), 54-69. https://doi.org/10.23887/ekuitas.v4i1.15565
Imaan, A., Fathima, S., & Adnan, F. (2024). Advancements in data management and warehousing: Enhancing MIS through modern technologies. MJET, 1(1), 75-83. https://doi.org/10.70592/mjet.2024.1.01.006
Jukić, N., & Velasco, M. (2010). Data warehousing requirements collection and definition. International Journal of Business Intelligence Research, 1(3), 66-76. https://doi.org/10.4018/jbir.2010070105
Vatumalae, V., Rajagopal, P., & Sundram, V. (2020). Warehouse management system of a third party logistics provider in Malaysia. International Journal of Economics and Finance, 12(9), 73. https://doi.org/10.5539/ijef.v12n9p73
Sihaloho, T., & Hidayati, N. (2023). Pengaruh penerapan warehousing management system terhadap kinerja operasional pergudangan perusahaan logistik XYZ. Manajemen IKM: Jurnal Manajemen Pengembangan Industri Kecil Menengah, 18(2), 101-112. https://doi.org/10.29244/mikm.18.2.101-112
Jukić, N., & Jukić, B. (2012). Modeling-centered data warehousing learning. International Journal of Business Intelligence Research, 3(4), 74-95. https://doi.org/10.4018/jbir.2012100104
Han, J., Kamber, M., & Pei, J. (2012). Data preprocessing. In Data mining: Concepts and techniques (pp. 83-124). Morgan Kaufmann. https://doi.org/10.1016/b978-0-12-381479-1.00003-4
Maswanganyi, N., Fumani, N., Khoza, J. K., Thango, B., & Lerato, M. (2024). Evaluating the impact of database and data warehouse technologies on organizational performance: A systematic review. Available at SSRN 4997368. https://doi.org/10.20944/preprints202410.0059.v1
Rahman, N. (2010). Incremental load in a data warehousing environment. International Journal of Intelligent Information Technologies, 6(3), 1-16. https://doi.org/10.4018/jiit.2010070101
Sasmal, S. (2024). Data warehousing revolution: AI-driven solutions. International Research Journal of Engineering and Applied Sciences, 12(1), 01-06. https://doi.org/10.55083/irjeas.2024.v12i01001
Ahmadi, S. (2023). Optimizing data warehousing performance through machine learning algorithms in the cloud. International Journal of Science and Research, 12(12), 1859-1867. https://doi.org/10.31219/osf.io/aeyg6.