Published: 2025-12-01
Decision Tree-Based Classification System for Elderly Social Aid Beneficiaries in Jakarta: Case Study Implementation in RW 13, Malaka Jaya Sub-Distric
DOI: 10.35870/ijsecs.v5i3.5243
Sutisna Sutisna, Hermawan Susanto
- Sutisna Sutisna: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
- Hermawan Susanto: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Downloads
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Social assistance distribution to elderly populations in urban areas, particularly Jakarta, frequently encounters challenges in accurately identifying eligible recipients. The present study develops a classification model for elderly social assistance recipients using the Decision Tree algorithm to enhance objectivity and precision in beneficiary selection. Field research was conducted in RW 13, Malaka Jaya Sub-District, East Jakarta, utilizing primary data gathered through systematic observation. Key variables including age, income level, residential ownership status, health conditions, and family dependents were incorporated into the classification framework. The CRISP-DM methodology structured the analytical process, spanning from initial data exploration through model validation. Model testing employed a 70:30 data partition strategy, achieving 95.84% classification accuracy. Findings demonstrate the model's capability in determining eligibility for Jakarta's elderly social assistance program. Implementation of the proposed classification system promises to strengthen transparency, improve targeting precision, and establish evidence-based decision-making in social welfare distribution.
Keywords
Social Assistance ; Elderly ; Classification ; Decision Tree ; CRISP-DM ; RW 13 Malaka Jaya
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 3 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i3.5243
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Sutisna Sutisna
Information Technology Study Program, Faculty of Computer Technology, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Zuhendra, M. I., & Hidayat, R. (2024). Penerapan data mining untuk klasterisasi tingkat kemiskinan berdasarkan data terpadu kesejahteraan sosial (DTKS). SKANIKA: Sistem Komputer dan Teknik Informatika, 7(1), 32-41. https://doi.org/10.36080/skanika.v7i1.3149
-
Daud, M., & Juita, R. (2025). Penerapan metode algoritma C4.5 untuk klasifikasi kelayakan penerima program bantuan pada Dinas Sosial Kabupaten Manokwari. DECODE: Jurnal Pendidikan Teknologi Informasi, 5(1), 271-278. https://doi.org/10.51454/decode.v5i1.1057
-
Pirmansyah, F., & Wahyudi, T. (2023). Implementasi data mining menggunakan algoritma C4.5 untuk prediksi evaluasi anggota satuan pengamanan (Studi kasus PT. YIMM Pulogadung). Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 4(3), 1566-1580. https://doi.org/10.35870/jimik.v4i3.370
-
Kusuma, A. C., & Soetanto, H. (2025). Klasifikasi kesehatan lansia menggunakan perbandingan metode K-Nearest Neighbor, Naïve Bayes dan Decision Tree. JURNAL INOVTEK POLBENG - Seri Informatika, 10(1), 559-570. https://doi.org/10.35314/2q4a1524
-
Purba, D. E. R., & Siboro, Y. O. (2025). Analisa data mining dengan Naïve Bayes untuk klasifikasi kelayakan penerima bantuan iuran jaminan kesehatan pada Desa Durian. Jatilima: Jurnal Multimedia dan Teknologi Informasi, 7(2). https://doi.org/10.54209/jatilima.v7i02.1279
-
Santosa, G. A. D., & Santoso, B. (2024). Decision support system for determining BLT-DD recipients using the C4.5 algorithm. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(3), 1177-1188. https://doi.org/10.57152/malcom.v4i3.157
-
-
Kinanti, R., & Jasmir. (2024). Penerapan metode clustering K-Means untuk menentukan prioritas penerima bantuan program beras untuk rakyat miskin (RASKIN) Studi kasus: Kecamatan Siulak. AKAKOM - Jurnal Informatika dan Rekayasa Komputer, 4(2). https://doi.org/10.33998/jakakom.v4i2.1933
-
-
Hidayatullah, N. A., & Prihartono, W. (2025). Clustering penerima bantuan pangan berbasis algoritma K-Means untuk meningkatkan efektivitas program sosial di Kota/Kabupaten Cirebon. JITET (Jurnal Informatika dan Teknik Elektro Terapan), 13(1). https://doi.org/10.23960/jitet.v13i1.5692
-
-
Surahman, A., & Hayati, U. (2023). Implementasi Algoritma Naïve Bayes Untuk Prediksi Penerima Bantuan Sosial. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 347-352. https://doi.org/10.36040/jati.v7i1.6302
-
-
-
-
Nurliana, E., Irawan, B., & Bahtiar, A. (2024). Implementasi data mining algoritma K-Means untuk klasifikasi penduduk miskin berdasarkan tingkat kemiskinan di Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 1116-1122. https://doi.org/10.36040/jati.v8i1.8883.
-
Hutagaol, V., & Anggraeni, D. (2025). Penerapan data mining untuk clustering masyarakat kurang mampu pada Desa Rawang Pasar VI dengan algoritma K-Means. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 10(1), 304-312. https://doi.org/10.29100/jipi.v10i1.5741
-
-
Aria, R. R. A., Susilowati, S., & Rahadjeng, I. R. (2023). Data Mining Menentukan Cluster Penerima Program Bantuan dengan Metode K-Means. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 7(1), 291-300. https://doi.org/10.33395/remik.v7i1.12030
-
-
Sutisna, S., & Yuniar, M. N. (2023). Klasifikasi kualitas air bersih menggunakan METODE Naïve baiyes. Jurnal Sains dan Teknologi, 5(1), 243-246. https://doi.org/10.55338/saintek.v5i1.1383
-
Surapati, U., & Jannah, M. (2024). Penerapan data mining menggunakan metode K-Means untuk mengetahui minat customer dalam pembelian merchandise Kpop. Jurnal Sains dan Teknologi, 5(3), 875-884. https://doi.org/10.55338/saintek.v5i1.2739
-
Dutt, A., Ismail, M. A., Herawan, T., & Hashem, I. A. (2024). Partition-based clustering algorithms applied to mixed data for educational data mining: a survey from 1971 to 2024. IEEE Access, 12, 172923-172942. https://doi.org/10.1109/ACCESS.2024.3496929
-
Liang, R., Huang, C., Zhang, C., Li, B., Saydam, S., & Canbulat, I. (2023). Exploring the fusion potentials of data visualization and data analytics in the process of mining digitalization. IEEE Access, 11, 40608-40628. https://doi.org/10.1007/978-3-031-54895-6_22
-
Dhanushkodi, K., Bala, A., Kodipyaka, N., & Shreyas, V. (2024). Customer Behavior Analysis and Predictive Modeling in Supermarket Retail: A Comprehensive Data Mining Approach. Ieee Access, 13, 2945-2957. https://doi.org/10.1109/ACCESS.2024.3407151.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.