Published: 2025-08-01

Social Media Sentiment Analysis of Twitter Regarding People's Housing Savings (TAPERA) Using Naïve Bayes

DOI: 10.35870/ijsecs.v5i2.4126

Front Cover IJSECS VOLUME 5 NOMOR 2 AGUSTUS 2025

Downloads

Article Metrics
Share:

Abstract

The advancement of technology has transformed how people interact and express opinions on social media platforms. This research examines Twitter conversations regarding Indonesia's government-initiated Housing Savings Program (TAPERA) through sentiment analysis. The study employed Naïve Bayes classification methodology, with data acquisition conducted via Google Colab platform utilizing the tweet-harvest library. The collection process yielded 1,800 tweets matching predetermined search parameters. Data underwent rigorous preprocessing, including text cleaning and manual sentiment annotation to establish reliable training datasets. Examination of 720 test tweets revealed 473 (65.69%) expressed negative sentiment while 247 (34.31%) conveyed positive sentiment toward the program. The implemented Naïve Bayes model achieved 84.17% accuracy, with negative class precision at 88.71% and recall at 88.60%, while positive class precision reached 78.54% with 76.08% recall. Results indicate the Naïve Bayes approach effectively categorizes public sentiment regarding the TAPERA program, offering valuable feedback for stakeholders responsible for program assessment and enhancement.

Keywords

Sentiment Analysis ; Twitter ; TAPERA ; Naïve Bayes

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.