Published: 2025-08-01
Social Media Sentiment Analysis of Twitter Regarding People's Housing Savings (TAPERA) Using Naïve Bayes
DOI: 10.35870/ijsecs.v5i2.4126
Avry Liyanah Dewy, Mia Kamayani
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The advancement of technology has transformed how people interact and express opinions on social media platforms. This research examines Twitter conversations regarding Indonesia's government-initiated Housing Savings Program (TAPERA) through sentiment analysis. The study employed Naïve Bayes classification methodology, with data acquisition conducted via Google Colab platform utilizing the tweet-harvest library. The collection process yielded 1,800 tweets matching predetermined search parameters. Data underwent rigorous preprocessing, including text cleaning and manual sentiment annotation to establish reliable training datasets. Examination of 720 test tweets revealed 473 (65.69%) expressed negative sentiment while 247 (34.31%) conveyed positive sentiment toward the program. The implemented Naïve Bayes model achieved 84.17% accuracy, with negative class precision at 88.71% and recall at 88.60%, while positive class precision reached 78.54% with 76.08% recall. Results indicate the Naïve Bayes approach effectively categorizes public sentiment regarding the TAPERA program, offering valuable feedback for stakeholders responsible for program assessment and enhancement.
Keywords
Sentiment Analysis ; Twitter ; TAPERA ; Naïve Bayes
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 2 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i2.4126
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Avry Liyanah Dewy
Informatics Engineering Study Program, Faculty of Industrial Engineering and Informatics, Universitas Muhammadiyah Prof. Dr. Hamka, South Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Mulyana, R., Pramadya, H., & Vindiazhari, N. R. (2024). Pelatihan literasi digital lembaga untuk lanjut usia Indonesia (LLI) Kota Bandung. Solusi Bersama: Jurnal Pengabdian dan Kesejahteraan Masyarakat, 1(2), 01-17. https://doi.org/10.62951/solusibersama.v1i2.147
-
Murni, M., Riadi, I., & Fadlil, A. (2023). Analisis sentimen HateSpeech pada pengguna layanan Twitter dengan metode Naïve Bayes Classifier (NBC). JURIKOM (Jurnal Riset Komputer), 10(2), 566-574. https://doi.org/10.30865/jurikom.v10i2.5984
-
Nugroho, R. S., & Diahwahyuningtyas, A. (2024, May 29). Apa itu Tapera, manfaat, besaran potongan, dan bisakah dicairkan? Kompas.com. https://www.kompas.com/tren/read/2024/05/29/160000165/apa-itu-tapera-manfaat-besaran-potongan-dan-bisakah-dicairkan-?page=all
-
Bayu Baskoro, B., Susanto, I., & Khomsah, S. (2021). Analisis sentimen pelanggan hotel di Purwokerto menggunakan metode Random Forest dan TF-IDF (Studi kasus: Ulasan pelanggan pada situs TRIPADVISOR). Journal of Informatics, Information System, Software Engineering and Applications, 3(2), 21-029. https://doi.org/10.20895/INISTA.V3I2
-
Florensius Sianipar, J., Ramadhan, Y. R., & Jaelani, I. (2023). Analisis sentimen pembangunan kereta cepat Jakarta-Bandung di media sosial Twitter menggunakan metode Naive Bayes. KLIK: KAJIAN ILMIAH INFORMATIKA DAN KOMPUTER, 4(1), 360-367. https://doi.org/10.30865/klik.v4i1.1033
-
Ghozali, M. I., Sugiharto, W. H., & Iskandar, A. F. (2023). KLIK: Kajian Ilmiah Informatika dan Komputer analisis sentimen pinjaman online di media sosial Twitter menggunakan metode Naive Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(6), 1340-1348. https://doi.org/10.30865/klik.v3i6.936
-
Thufailah, K. K., Albianazwa, B. M., & Ahsanti, D. M. (2024). Sentiment analysis of public opinion on public housing savings policy (Tapera) on social media "X". Tamalanrea: Journal of Government and Development (JGD), 1(2), 47-56. https://doi.org/10.69816/jgd.v1i2.35841
-
Tetteh, M. O., Boateng, E. B., Darko, A., & Chan, A. P. (2023). What are the general public's needs, concerns and views about energy efficiency retrofitting of existing building stock? A sentiment analysis of social media data. Energy and Buildings, 301, 113721. https://doi.org/10.1016/j.enbuild.2023.113721
-
Tan, M. J., & Guan, C. (2021). Are people happier in locations of high property value? Spatial temporal analytics of activity frequency, public sentiment and housing price using twitter data. Applied Geography, 132, 102474. https://doi.org/10.1016/j.apgeog.2021.102474
-
Hannum, C., Arslanli, K. Y., & Kalay, A. F. (2019). Spatial analysis of Twitter sentiment and district-level housing prices. Journal of European Real Estate Research, 12(2), 173-189. https://doi.org/10.1108/JERER-08-2018-0036
-
-
-
-
-
Saputra, R., & Hasan, F. N. (2024). Analisis sentimen terhadap program makan siang & susu gratis menggunakan algoritma Naive Bayes. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(3), 411-419. https://doi.org/10.47233/jteksis.v6i3.1378
-
Firsttama, R. A., Arifiyanti, A. A., & Kartika, D. S. Y. (2024). Analisis sentimen komentar Youtube konferensi tingkat tinggi G20 menggunakan metode Naive Bayes. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(2), 282-285. https://doi.org/10.47233/jteksis.v6i2.1263
-
Sulindawaty, Laia, E., & Yamin, M. (2023). Penerapan algoritma Naïve Bayes dalam menganalisis sentimen pada review pengguna E-Commerce. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(1), 305-316. https://doi.org/10.30865/klik.v4i1.1186
-
Yutika, C. H., Adiwijaya, & Faraby, S. Al. (2021). Analisis sentimen berbasis aspek pada review Female Daily menggunakan TF-IDF dan Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(2), 422-430. https://doi.org/10.30865/mib.v5i2.2845
-
Rachmatullah, M. I. C. (2023). Penerapan SMOTE untuk meningkatan kinerja klasifikasi penilaian kredit. JURIKOM (Jurnal Riset Komputer), 10(1), 302-309. https://doi.org/10.30865/jurikom.v10i1.5612
-
Akbar, Y., & Sugiharto, T. (2023). Analisis sentimen pengguna Twitter di Indonesia terhadap ChatGPT menggunakan algoritma C4.5 dan Naïve Bayes. Jurnal Sains dan Teknologi, 5(1), 115-122. https://doi.org/10.55338/saintek.v4i3.1368

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.