Published: 2026-02-10
Comparative Analysis of SAW and WP Methods for Employee Selection in MSMEs
DOI: 10.35870/ijmsit.v6i1.6511
Ni Made Yeni Dwi Rahayu, Ni Putu Dewi Eka Yanti
- Ni Made Yeni Dwi Rahayu: Politeknik Negeri Bali
- Ni Putu Dewi Eka Yanti: Politeknik Negeri Bali
Downloads
Article Metrics
- Views 8
- Downloads 1
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The process of selecting new employees in Micro, Small, and Medium Enterprises (MSMEs) is often still carried out subjectively, which can lead to less optimal decision-making. This study aims to apply and compare the Simple Additive Weighting (SAW) and Weighted Product (WP) methods as decision support systems for new employee selection in MSMEs. The evaluation is conducted based on four criteria: education level, work experience, skill competency, and interview results. The dataset consists of ten job candidates that are processed through weight normalization, preference value calculation, and ranking stages. The results show that both methods are capable of providing objective and measurable recommendations for selecting the best employees, although differences appear in the final ranking of candidates because the SAW method calculates scores by summing weighted normalized values for each criterion, while the WP method multiplies each criterion value raised to its weight, making the influence of high or low scores more pronounced. The SAW method is simpler and easier to understand, while the WP method is more sensitive to criterion weights and better distinguishes candidates with varied performance levels. The best alternative tends to consistently rank at the top in both methods. Therefore, the implementation of the SAW and WP methods can assist MSMEs in making systematic and accurate employee selection decisions based on a dataset of ten candidates evaluated across four assessment criteria.
Keywords
Decision support system ; SAW ; WP ; MSMEs
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal of Management Science and Information Technology. The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 6 No. 1 (2026)
-
Section: Articles
-
Published: %750 %e, %2026
-
License: CC BY 4.0
-
Copyright: © 2026 Authors
-
DOI: 10.35870/ijmsit.v6i1.6511
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Adibrata, D. A., & Mustafidah, H. (2021). Sistem Pendukung Keputusan Online untuk Menentukan Kelayakan Tenaga Kerja Indonesia (TKI) Menggunakan Metode Simple Additive Weighting (SAW) dan Weighted Product (WP). Sainteks, 18(1). https://doi.org/10.30595/sainteks.v18i1.10563
-
-
Aldisa, R. T., Nugroho, F., Mesran, M., Sinaga, S. A., & Sussolaikah, K. (2022). Sistem Pendukung Keputusan Menentukan Sales Terbaik Menerapkan Metode Simple Additive Weighting (SAW). Journal of Information System Research (JOSH), 3(4). https://doi.org/10.47065/josh.v3i4.1955
-
Aulia Nurizki, & Naely Farkhatin. (2024). Sistem Pendukung Keputusan Penggunaan Pewangi Setrika Terfavorit Di Sukmajaya Laundry Menggunakan Metode Weighted Product. Jurnal Ilmiah Sains Teknologi Dan Informasi, 2(4). https://doi.org/10.59024/jiti.v2i4.904
-
-
-
Etikawati, E., & Udjang, R. (2016). Strategi Rekrutmen Dan Seleksi Terhadap Kinerja Karyawan. Jurnal Perilaku Dan Strategi Bisnis, 4(1). https://doi.org/10.26486/jpsb.v4i1.443
-
-
Habibie, M. H. (2023). Pelaksanaan Sertifikasi Halal Terhadap Usaha Mikro Kecil Menengah (Umkm) Di Kota Padang. Ekonomi Islam, 14(2). https://doi.org/10.22236/jei.v14i2.9266
-
Hadiana, A. W. (2022). Sistem Pendukung Keputusan Pemberian Penghargaan Umkm Skala Mikro Di Kabupaten Bandung Barat Menggunakan Metode Analytic Hierarchy Process. Informatics and Digital Expert (INDEX), 3(1). https://doi.org/10.36423/index.v3i1.688
-
Ikhlas, S. (2022). Analisis Peran UKM Dalam Meningkatkan Pemberdayaan Perempuan Dalam Perspektif Islam. Ekopem: Jurnal Ekonomi Pembangunan, 4(4). https://doi.org/10.32938/jep.v4i4.2744
-
Khotimah, D. K., Sunoto, I., & Juliana, J. (2023). Perancangan Aplikasi Sistem Seleksi Penerimaan Karyawan pada PT Trac Astra Berbasis Java. Jurnal Riset Dan Aplikasi Mahasiswa Informatika (JRAMI), 4(01). https://doi.org/10.30998/jrami.v4i01.4684
-
Mardian, D., Neneng, N., Puspaningrum, A. S., Hasibuan, A., & Tinambunan, M. H. (2023). Sistem Pendukung Keputusan Penentuan Siswa Berprestasi Menggunakan Metode Weight Product (WP). Jurnal Informatika Dan Rekayasa Perangkat Lunak, 4(2). https://doi.org/10.33365/jatika.v4i2.2593
-
Mulyani, N., & Hutahaean, J. (2021). Penerapan Metode Simple Additivie Weighting Untuk Mengefektifkan Penilaian Kinerja Karyawan. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(3). https://doi.org/10.30865/mib.v5i3.3103
-
Nathaniel, D., Padli Pratama, F., Farhan, M., & Asido Elyakim P, V. (2024). Sistem Pendukung Keputusan Pemilihan Laptop Dengan Menerapkan Metode Simple Additive Weighting (SAW). Journal of Data Analytics, Information, and Computer Science, 1(4). https://doi.org/10.70248/jdaics.v1i4.1396
-
-
Pahira, S. H., & Rinaldy, R. (2023). Pentingnya Manajemen Sumber Daya Manusia (MSDM) Dalam Meningkatkan Kinerja Organisasi. COMSERVA : Jurnal Penelitian Dan Pengabdian Masyarakat, 3(02). https://doi.org/10.59141/comserva.v3i03.882
-
Putra, D. H., Larasati, L. Y., & Wibowo, S. A. (2025). Pengaruh Rekrutmen Dan Seleksi Terhadap Kinerja Perusahaan: Literature Review. RIGGS: Journal of Artificial Intelligence and Digital Business, 4(2). https://doi.org/10.31004/riggs.v4i2.446
-
Saputri, N. D. M., Yuliani, Y., & Putri, Y. H. (2021). Peningkatan Kemampuan UMKM dalam Melakukan Analisis Kelayakan Usaha Agar Dapat Bertahan di Masa Pandemi COVID-19. Sricommerce: Journal of Sriwijaya Community Services, 2(2). https://doi.org/10.29259/jscs.v2i2.69
-
Suartini, N. K. Y., Divayana, D. G. H., & Dewi, L. J. E. (2023). Comparison Analysis of AHP-SAW, AHP-WP, AHP-TOPSIS Methods in Private Tutor Selection. International Journal of Modern Education and Computer Science, 15(1). https://doi.org/10.5815/ijmecs.2023.01.03
-
Supriadi, I. (2021). Implementasi Algoritma SAW Pada Aplikasi Penentuan Pembimbing Tugas Akhir Mahasiswa (Studi Kasus: Prodi Informatika Universitas Langlangbuana). INTERNAL (Information System Journal), 4(1). https://doi.org/10.32627/internal.v4i1.284
-
Supriyanti, W. (2023). Comparative analysis of the sensitivity test of the SAW and WP methods in scholarship selection. Jurnal Teknik Informatika C.I.T Medicom, 15(2). https://doi.org/10.35335/cit.vol15.2023.471.pp84-95
-
Wahyuni, N., Setyaningsih, E., Hermawansyah, A., Canta, D. S., Kinanti, D. P., Surmiati, S., & Sudarman, S. (2023). Sistem Pendukung Keputusan Penerima Beasiswa Murid Berprestasi dengan Metode SAW. Journal of Computer System and Informatics (JoSYC), 4(3). https://doi.org/10.47065/josyc.v4i3.3362
-

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.