Modeling and Estimation of Nickel Laterite Resources Using Geocomputing Methods at North Konawa, Southeast Sulawesi

Main Article Content

Rohaya Langkoke

Abstract

Administratively, the research area is located in the Waturambaha area, North Konawe, Southeast Sulawesi province. The method used in determining the distribution and estimation of Ni laterite measurable resources is one of the geocomputational methods, Inverse Distance Wieght (IDW). From the interpolation of 82 drill points, it was concluded that the distribution of Ni levels is quite high (COG ≥ 1.2%) discriminated dominantly in the central to northern part and some points in the northwest of the study area, while low-grade Ni (<1.2%) is distributed in the northeastern to southeastern part of the study area.   Based on distributed ore modeling in the central to northern parts of the study area on limonite layers with a thickness of 2 – 4 m while in saprolite layers the thickness ranges from 6 – 12 m.  Waste in the limonite layer with a thickness of 5-10 m while in saprolite 4-7 m.   Modeling the distribution of Ni by the IDW method in the study area obtained a measured resource volume of Ni of 1,196,450 m³ which was then multiplied by the density of each layer (limonite and saprolite) and obtained a tonnage of ni measured resources of 1,854,500 M/T with 1.39% ni average.

Article Details

How to Cite
Langkoke, R. (2023). Modeling and Estimation of Nickel Laterite Resources Using Geocomputing Methods at North Konawa, Southeast Sulawesi. International Journal Software Engineering and Computer Science (IJSECS), 3(1), 19–32. https://doi.org/10.35870/ijsecs.v3i1.1090
Section
Articles
Author Biography

Rohaya Langkoke, Universitas Hasanuddin

Geological Engineering Department, Faculty of Engineering, Universitas Hasanuddin, Makassar City, South Sulawesi Province, Indonesia

References

Ahmad, W., 2006. LATERITES: Fundamentals of Chemistry, Mineralogy, Weathering Processes and Laterite Formation, Property of PT. INCO for Laterite Ore Manual.

Altin, M. 2013. Identifikasi Sebaran Nikel Laterit dan Volume Bijih Nikel, PT. Vale Indonesia, Bandung.

Anonim. 1998. Klasifikasi Sumberdaya Mineral dan Cadangan. Badan Standarisasi Nasional.

Carranza, E.J.M.; Laborte, A.G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore. Geol. Rev. 2015, 71, 777–787.

Elias, M, 2002. Nickel Laterite Deposits- Geological Overview, Resources and Exploration. Special Publication 4 Nickel Elias Assotiation. CSA Australia Pty Ltd, 24p.

Fenton, C.L and Fenton M. A. 1940. The Rock Book. Doubleday & Company. Inc. Garden City. New York

Golightly, J.P. 1979. Nickeliferous Laterites: A General Description. International Laterit. Symposium New Orleans. Feb 19-21, 1979

Habib, M., Alzubi, Y., Malkawi, A. and Awwad, M., 2020. Impact of interpolation techniques on the accuracy of large-scale digital elevation model. Open Geosciences, 12(1), pp.190-202. DOI: https://doi.org/10.1515/geo-2020-0012.

Hasan, E.S. and Salihin, L.I., 2020. Characteristics of Ultramafic Igneous Rock Ofiolite Complex in Asera District, North Konawe Regency Southeast Sulawesi Province, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 5(3), pp.108-112. DOI: https://doi.org/10.25299/jgeet.2020.5.3.4113.

Jaya, A. et al. 2022. Uplift and Laterization History of Sulawesi Ophiolite Implication to Neogene Sedimentary Surrounding of SE Sulawesi. PROCEEDINGS PIT IAGI 51st 2022. Makassar

Kadarusman, A. 2004. Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics 392 (2004) 55 – 83

Latif, A.A., 2008. Studi Perbandingan Metode Nearest Neighbourhood Point (NNP). Inverse Distance Weighted (IDW) dan Kriging pada Perhitungan Cadangan Nikel Laterit.

Maulana, A. 2017. Endapan Mineral. Ombak, Yogyakarta

Salekin, S., Burgess, J.H., Morgenroth, J., Mason, E.G. and Meason, D.F., 2018. A comparative study of three non-geostatistical methods for optimising digital elevation model interpolation. ISPRS international journal of geo-information, 7(8), p.300. DOI: https://doi.org/10.3390/ijgi7080300.

Sukandarrumidi .2007. Geologi Mineral Logam. Gadjah Mada University Press, Yogyakarta

Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z. and Hu, Z., 2020. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi Province, China. Minerals, 10(2), p.102. DOI: https://doi.org/10.3390/min10020102.

Surono, 2013. Geologi Lengan Tenggara Sulawesi. Badan Geologi, Kementerian Energi dan Sumber Daya Mineral, Bandung

Streckeisen, A.L., 1976, The IUGS Systematic of Igneous Rocks, Journal of The Geological Society, London.

Tonggiroh, A., Jaya, A. and Irfan, U.R., 2017. Type of nickel laterization, lasalo fracture and mollase deposits of Southeast Sulawesi, Indonesia. Ecology, Environment and Conservation, 23(1), pp.97-103.

Wakila, M.H., Heriansyah, A.F., Firdaus, F. and Nurhawaisyah, S.R., 2018. Pengaruh Tingkat Pelapukan Terhadap Kadar Nikel Laterit Pada Daerah Ussu, Kec. Malili Kab. Luwu Timur Prov. Sulawesi Selatan.

Zandi, S., 2013. GeoComputational methods for surface and field data interpolation (Doctoral dissertation, Auckland University of Technology). URL: https://openrepository.aut.ac.nz/handle/10292/7155.