Published: 2025-07-01

Identification of Flower Type Images Using KNN Algorithm with HSV Color Extraction and GLCM Texture

DOI: 10.35870/jtik.v9i3.3826

Issue Cover

Downloads

Article Metrics
Share:

Abstract

Due to the variety of types of flowers that exist and having and tracking each variety, making plant lovers and cultivators difficult to distinguish in determining the type of flower, it takes a very long time to find out the type of flower if you only rely on the five senses. With the application of the K-Nearest Neighbor algorithm and feature extraction of color and texture, it is very helpful in image processing to identify flowers more easily and shorten the time, with the greatest accuracy of 71% using the K-7 value, the flower was successfully carried out.

Keywords

Identification ; HSV ; GLCM ; K-Nearest Neighbor

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)