
944 

 

 

  

 
 
 
 
 
 
  
  

Pembuatan dan Deploy API di Google Cloud Platform 

Menggunakan Cloud Run Services 

Oswaldo Da Conceicao 1*, Yasinta O. L. Rema 2, Budiman Baso 3, Guido Adolfus Suni 4 

1*,2,3,4 Program Studi Teknologi Informasi, Fakultas Pertanian, Sains dan Kesehatan, Universitas Timor, Kabupaten Timor Tengah Utara, Provinsi 
Nusa Tenggara Timur, Indonesia. 
 

a r t i c l e  i n f o 
 

Article history: 

Received 20 December 2024 
Received in revised form 

10 January 2025 

Accepted 15 February 2025 

Available online July 2025. 

 

Keywords: 
Cloud Computing; API; Cloud 

Run. 

 

 

 

 

 

Kata Kunci: 
Cloud Computing; API; Cloud 

Run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ACM Computing Classification System (CCS) 

 
Communication and Mass Media Complete (CMMC) 

a b s t r a c t   

This research discusses the development, testing, and deployment of a backend API 
using Google Cloud Platform (GCP), with Firestore as the database and Cloud Storage 
for storing user profile photos. The API was developed using Express.js, integrated with 
Firestore and Cloud Storage, and tested for functionality using Postman. Deployment is 
done to Cloud Run via creating a Dockerfile and building a Docker image. Test results 
showed that the API was able to handle 7,875 requests in five minutes, with an average 
of 25.64 requests per second and an average response time of 97 ms. All endpoints are 
stable, responsive, and error-free. This research focuses on the application of cloud 
technology to the development of sign language applications, and shows that the use of 
GCP services can produce efficient and scalable API solutions. These results are 
significant in supporting the development of cloud-based applications to meet user 
needs effectively, especially in mobile applications that require reliable backend services 
 

a b s t r a k   

Penelitian ini membahas pengembangan, pengujian, dan deployment API backend 
menggunakan Google Cloud Platform (GCP), dengan Firestore sebagai database dan 
Cloud Storage untuk penyimpanan foto profil pengguna. API dikembangkan 
menggunakan Express.js, diintegrasikan dengan Firestore dan Cloud Storage, serta diuji 
fungsionalitasnya menggunakan Postman. Deployment dilakukan ke Cloud Run melalui 
pembuatan Dockerfile dan pembangunan Docker image. Hasil pengujian menunjukkan 
bahwa API mampu menangani 7.875 permintaan dalam lima menit, dengan rata-rata 
25,64 permintaan per detik dan waktu respons rata-rata 97 ms. Semua endpoint stabil, 
responsif, dan bebas error. Penelitian ini berfokus pada penerapan teknologi cloud 
untuk pengembangan aplikasi bahasa isyarat, dan menunjukkan bahwa penggunaan 
layanan GCP dapat menghasilkan solusi API yang efisien dan skalabel. Hasil ini 
signifikan dalam mendukung pengembangan aplikasi berbasis cloud untuk memenuhi 
kebutuhan pengguna secara efektif, khususnya dalam aplikasi mobile yang 
membutuhkan layanan backend handal. 
 

 

 

 

 

 

*Corresponding Author. Email: oswaldodc28@gmail.com 1*. 
 
Copyright 2025 by the authors of this article. Published by Lembaga Otonom Lembaga Informasi dan Riset 
Indonesia (KITA INFO dan RISET). This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.   

E - I S S N : 2 5 8 0 - 1 6 4 3  Volume 9 (3), July-September 2025, 944-955 

Jurnal JTIK (Jurnal Teknologi Informasi 
dan Komunikasi) 
DOI:  h t tps: //doi .o rg/10. 35870/ j t ik . v9i3 . 3524  

https://dl.acm.org/
https://www.ebsco.com/products/research-databases/communication-mass-media-complete
https://creativecommons.org/licenses/by-nc/4.0/


945 Oswaldo Da Conceicao, Yasinta O. L. Rema, Budiman Baso, Guido Adolfus Suni / Jurnal JTIK (Jurnal Teknologi Informasi dan 
Komunikasi), 9 (3) 2025, 944-955 

  
 
 

 

1. Pendahuluan 
 
Bahasa isyarat adalah bahasa yang menggunakan 
gerakan tubuh sebagai media untuk berkomunikasi, 
dalam kelompok tuli, umumnya menggerakkan 
kedua tangan saat berkomunikasi (Muhtadi Ambarak 
dan Zakki Falani, 2023). Penggunaan bahasa isyarat 
memungkinkan mereka untuk berinteraksi dengan 
lingkungan sosialnya, memahami informasi, dan 
mengekspresikan diri dengan cara yang lebih efektif. 
Badan Pusat Statistik menyatakan, lapangan 
pekerjaan bagi disabilitas di rentang waktu antara 
2016-2019 tidak mengalami pertumbuhan lebih dari 
49%. Hal itu disebabkan oleh adanya perbedaan 
bahasa dan gaya komunikasi sehingga kebanyakan 
penyandang Tuna Rungu atau Tuli tidak mampu 
mandiri sejahtera (Azizah, Resmi, dan Alam, 2023). 
Pengembangan aplikasi yang menerjemahkan bahasa 
isyarat ke bahasa lisan dapat menjembatani 
kesenjangan komunikasi. Sehingga tidak hanya 
mempermudah interaksi antara individu tunarungu 
dan mereka yang tidak berbahasa isyarat, tetapi juga 
meningkatkan kesadaran dan pemahaman 
masyarakat akan pentingnya inklusi bagi komunitas 
tunarungu. 
 
Penelitian sebelumnya yang dilakukan oleh Sholawati 
(2022), menerapkan teknologi Convolutional Neural 
Network (CNN) untuk mengembangkan aplikasi 
pengenalan bahasa isyarat secara real-time, yang 
bertujuan membantu siswa tunarungu dalam belajar 
bahasa isyarat. Namun, dalam penelitian ini, 
implementasi masih terbatas pada penggunaan 
perangkat keras lokal tanpa memanfaatkan teknologi 
cloud computing. Akibatnya, aplikasi tersebut memiliki 
keterbatasan dalam hal skalabilitas dan fleksibilitas. 
Selain itu, data yang dihasilkan dan digunakan oleh 
aplikasi hanya tersimpan secara lokal, yang 
berpotensi menimbulkan risiko kehilangan data dan 
mempersulit aksesibilitas dari berbagai perangkat. 
Teknologi cloud memiliki potensi untuk mengatasi 
kekurangan tersebut dengan layanan yang tersedia 
sehingga akses terhadap aplikasi menjadi mudah dan 
waktu pemrosesan data serta implementasi machine 
learning dapat dilakukan dengan lebih cepat (Fujiyanti, 
Suranegara, dan Ichsan, 2024). Cloud computing 
menawarkan model layanan yang fleksibel dan 
terukur, memungkinkan akses mudah ke sumber 
daya komputasi tanpa memerlukan kepemilikan 

infrastruktur fisik secara langsung (Muhamad Dyo 
Arganata, 2024). Layanan Cloud Platform memberikan 
berbagai layanan termasuk storage, upload, dan download 
(Gupta, Mittal, dan Mufti, 2021). Dengan cloud 
computing, program perangkat lunak yang digunakan 
tidak berada pada komputer kita, melainkan tersimpan 
pada server-server yang diakses melalui internet 
sehingga seluruh cloud services dan storage dapat diakses 
dari mana saja dan kapan saja selama terdapat koneksi 
internet (Ginanjar dan Setiyadi, 2020). Google Cloud 
Platform (GCP) merupakan salah satu penyedia 
layanan cloud yang banyak digunakan karena 
menyediakan berbagai layanan cloud computing 
(Irfansyah et al., 2024). Salah satu layanan yang 
terintegrasi dalam GCP adalah Cloud Run, yang 
memungkinkan pengembang dapat mengunggah dan 
menjalankan aplikasi dengan container tanpa harus 
memikirkan infrastruktur yang mendukungnya 
(Kejora dan Susetyo, 2024). Cloud Run secara otomatis 
menambah dan menghapus instance container untuk 
menangani semua permintaan yang masuk, sebuah 
fitur yang dikenal sebagai penskalaan otomatis. Cloud Run 
juga memiliki kemampuan penskalaan hingga nol, yang 
berarti jika tidak ada permintaan yang masuk, semua 
instance container, termasuk instance terakhir, akan 
dihapus.  
 
Perilaku ini adalah pengaturan default, dengan jumlah 
instance minimum adalah nol. Kemampuan ini tidak 
hanya membantu meningkatkan keandalan dan 
kinerja aplikasi, tetapi juga memungkinkan 
penghematan biaya dengan menghindari alokasi 
sumber daya yang tidak perlu (Abraham dan Yang, 
2023). Penerapan teknologi yang tepat dapat 
membantu masyarakat berkomunikasi dengan 
penderita tunarungu dan tunawicara. Melalui program 
Bangkit Academy, penulis diajarkan untuk 
memberikan solusi di bidang teknologi dengan 
mengembangkan aplikasi pembelajaran bahasa isyarat 
sebagai tema capstone project tim penulis. Bangkit 
merupakan program pembelajaran yang dipimpin 
oleh Google dengan dukungan GoTo, Traveloka, dan 
Deeptech Foundation. Dengan dukungan Kampus 
Merdeka, Bangkit akan menawarkan tempat belajar 
untuk mahasiswa Indonesia untuk memastikan 
mereka relevan dengan kecakapan yang dibutuhkan 
oleh industri (Fajrul Falah, 2023). Dalam proyek ini, 
penulis bertugas di bagian cloud computing, 
berkontribusi untuk membuat backend API dan 



946 Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 9 (3) 2025, 944-955      
 

 

 

melakukan deployment API tersebut bersama API 
model machine learning yang dikembangkan oleh tim 
machine learning ke Cloud Run Services. API tersebut 
nantinya akan diintegrasikan oleh tim mobile 
developer untuk membangun aplikasi yang 
memudahkan pengguna mempelajari bahasa isyarat 
secara efektif. Aplikasi ini diharapkan untuk menjadi 
solusi untuk masyarakat luas dalam mempelajari 
bahasa isyarat guna mempermudah komunikasi 
dengan penyandang tunarungu maupun tunawicara. 
 
 

2. Metodologi Penelitian 
 
Tahapan Penelitian 
Pada penelitian ini, penulis menggunakan metode 
waterfall untuk pengembangan sistem karena urutan 
proses pengerjaan menggunakan metode waterfall ini 
lebih teratur dari satu tahap ke tahap yang selanjutnya 
(Badrul, 2021). Metode ini menggunakan pendekatan 
sistematis dan urut dimulai dari level kebutuhan 
sistem lalu menuju ke tahapan analisis, desain, coding, 
testing/verification, dan maintenance (Wahyu Rafsan 
Zani, Kartini, dan Mustika Rizki, 2024). 
Terdapat beberapa tahapan dalam pengembangan 
backend, yaitu desain arsitektur cloud, pembuatan 
API, konfigurasi database, menyelesaikan pembuatan 
API, testing API, deploy API ke cloud run, dan yang 
terakhir penyusunan dokumentasi API. Tahapan 
pengerjaan dapat dilihat pada gambar berikut ini. 
 

 
Gambar 1. Tahapan Pengerjaan Backend 

 
 

3.  Hasil dan Pembahasan 
 
Hasil 
Desain Arsitektur Google Cloud 
Desain arsitektur memberikan gambaran bagaimana 
komponen aplikasi berinteraksi satu sama lain dalam 
lingkungan Google Cloud Platform (GCP) untuk 

mendukung fungsionalitas aplikasi secara 
keseluruhan. Proses pembuatan desain arsitektur 
dilakukan pada website draw.io dan dapat dilihat 
seperti pada gambar berikut: 

 

 
Gambar 2. Desain Arsistektur Google Cloud 

 
Alur interaksi dalam arsitektur ini dimulai saat 
pengguna membuka aplikasi di perangkat mereka dan 
melakukan login melalui Firebase Authentication. Setelah 
autentikasi berhasil, aplikasi mengakses data pengguna 
yang tersimpan di Firestore dan menampilkannya 
kepada pengguna. Pengguna kemudian dapat 
mengunggah atau mengubah foto profil mereka, yang 
disimpan dengan aman di bucket Cloud Storage melalui 
interaksi dengan Backend API yang berjalan di Cloud 
Run. Selain itu, pengguna juga dapat memanfaatkan 
fitur berbasis machine learning, di mana aplikasi backend 
mengirim permintaan ke model machine learning yang 
juga di-deploy di Cloud Run. Model ini memproses 
permintaan dan mengembalikan hasil analisis atau 
prediksi ke aplikasi. Setiap langkah dalam proses ini 
dilindungi oleh Google Cloud Identity and Access 
Management (IAM), yang memastikan bahwa hanya 
pengguna dan layanan yang memiliki izin yang sesuai 
yang dapat mengakses dan memodifikasi data atau 
sumber daya. Sementara itu, Docker images untuk 
aplikasi backend dan model machine learning disimpan 
di Image Repository (Artifact Registry) sebelum di-deploy 
ke Cloud Run, memastikan proses pengembangan dan 
deployment yang terorganisir dan efisien. 
 
Pembuatan API 
Application Programming Interface (API) merupakan 
antarmuka yang dibangun oleh pengembang sistem 
supaya sebagian atau keseluruhan fungsi sistem dapat 
diakses secara programatis (Kurniawan, Humaira, dan 
Rozi, 2020). Pada API berbasis website dibagi menjadi 
dua, yaitu REST API dan SOAP API. REST API 



947 Oswaldo Da Conceicao, Yasinta O. L. Rema, Budiman Baso, Guido Adolfus Suni / Jurnal JTIK (Jurnal Teknologi Informasi dan 
Komunikasi), 9 (3) 2025, 944-955 

  
 
 

 

adalah API berbasis website yang menggunakan 
teknologi REST dan menggunakan format JSON 
(JavaScript Object Notation) (Wardhana, Arwani, dan 
Rahayudi, 2020). Formatnya adalah teks murni dan 
mudah diidentifikasi serta dapat diproses oleh mesin 
di seluruh jaringan dan platform (Ehsan et al., 2022). 
Proses pembuatan API dimulai dengan menyiapkan 
repositori GitHub untuk mengelola kode sumber 
proyek secara terstruktur dan kolaboratif. Pertama, 
repositori baru dibuat di GitHub dengan nama 
Project-Capstone, memungkinkan tim untuk melakukan 
version control dan berkolaborasi dalam 
pengembangan kode. Setelah repositori dibuat, 
proyek diinisialisasi secara lokal dengan mengkloning 
repositori tersebut ke dalam lingkungan 
pengembangan di Visual Studio Code. Selanjutnya, 
dependensi yang diperlukan diinstal menggunakan 
npm (Node Package Manager). Ini mencakup instalasi 
Express.js, yang merupakan framework utama untuk 
membangun API, serta berbagai package lain yang 
dibutuhkan, seperti body-parser untuk memproses 
request body, dotenv untuk mengelola variabel 
lingkungan, dan nodemon untuk membantu proses 
developing sehingga tidak perlu menjalankan ulang 
server setiap ada perubahan pada baris kode. 
ExpressJS juga dikenal sebagai framework yang ringan 
karena tidak memerlukan banyak dependensi 
tambahan sehingga ideal untuk pengembangan 
aplikasi web dan API (Bachtiar et al., 2024). 
Dependensi ini didefinisikan di dalam file package.json, 
yang memudahkan pengelolaan dan instalasi ulang 
jika diperlukan. 

 

 
Gambar 3. Dependencies yang digunakan 

 
Setelah semua dependensi terinstal, tahap berikutnya 
adalah memastikan bahwa server API dapat berjalan di 
lingkungan lokal. Sebuah file server.js  dibuat sebagai 
entry point aplikasi. Di dalam file ini, server Express 
diinisialisasi dengan mendefinisikan beberapa 
middleware dasar seperti body-parser, dan endpoint 
pertama juga dibuat, untuk menguji respons server. 

Akhirnya, server dijalankan menggunakan perintah npm 
run start, dan penulis memastikan bahwa server 
berfungsi dengan baik dengan mengakses 
http://localhost:3000. 
 

 
Gambar 4. Server berjalan di port 3000 

 
Jika server berjalan tanpa masalah, ini berarti bahwa 
infrastruktur dasar API telah siap untuk 
dikembangkan lebih lanjut, dan kode dapat didorong 
(push) kembali ke GitHub untuk disimpan dan 
dibagikan dengan tim lainnya. 
 
Konfigurasi Database 
Konfigurasi database untuk aplikasi dimulai dengan 
pembuatan Service Account Key di Google Cloud Platform 
(GCP). Service Account Key ini penting karena 
memungkinkan aplikasi backend mengakses layanan 
Google seperti Firestore dan Cloud Storage secara aman. 
Proses ini dimulai dengan membuat Service Account 
baru di Google Cloud Console, di mana peran yang 
relevan seperti "Storage Object Admin" diberikan. 
Setelah Service Account dibuat, kunci otentikasi diunduh 
dalam format JSON. File ini berisi kredensial yang 
dibutuhkan aplikasi untuk berkomunikasi dengan 
Firestore dan Cloud Storage. Langkah berikutnya adalah 
menambahkan Service Account Key ke proyek backend. 
File JSON tersebut disimpan di direktori proyek dan 
diimpor melalui variabel lingkungan menggunakan 
package dotenv. Ini memastikan bahwa saat aplikasi 
backend dijalankan, kredensial tersebut sudah tersedia 
untuk digunakan.  
 
Pengaturan ini sangat penting karena memungkinkan 
aplikasi untuk mengakses database dan storage tanpa 
harus bergantung pada login pengguna atau interaksi 
manual lainnya. Setelah kredensial terkonfigurasi, 
aplikasi dihubungkan ke Firestore. Hal ini dilakukan 
dengan menginisialisasi Firebase Admin SDK di dalam 
kode backend pada file db.js. Dengan inisialisasi ini, 
aplikasi siap untuk melakukan operasi database seperti 
pembuatan, pembacaan, pembaruan, dan 
penghapusan (CRUD) data di Firestore. Pada saat yang 
sama, aplikasi juga dikonfigurasi untuk terhubung ke 



948 Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 9 (3) 2025, 944-955      
 

 

 

Cloud Storage, yang digunakan untuk menyimpan dan 
mengelola file gambar profil pengguna. Google Cloud 
Storage menyediakan objek penyimpanan yang cocok 
untuk berbagai jenis data, dengan opsi untuk 
redundansi regional atau multi-regional untuk 
memastikan ketahanan data (Borra, 2024). Kode 
konfigurasi dengan database dapat dilihat pada 
Gambar 5. 
 

 
Gambar 5. Kode Konfigurasi Database 

 
Menyelesaikan Pembuatan API 
Pada tahap penyelesaian pembuatan API, fokus 
utama adalah menyempurnakan seluruh endpoint 
yang diperlukan untuk aplikasi. Setelah konfigurasi 
dengan Firestore dan Cloud Storage telah selesai, semua 
endpoint API diimplementasikan untuk menangani 
operasi CRUD (Create, Read, Update, Delete) pada data 
pengguna. Setiap endpoint dirancang untuk 
mengelola interaksi dengan database dan storage 
secara efisien, memastikan bahwa data pengguna 
dapat diakses dan dimodifikasi sesuai dengan 
kebutuhan. 

 

 
Gambar 6. Endpoint dan Request Method 

 
Dari gambar di atas dapat dilihat bahwa endpoint 
yang dibutuhkan untuk aplikasi telah 
diimplementasikan. Misalnya, endpoint untuk 
membuat pengguna baru, mengambil detail 
pengguna, memperbarui informasi pengguna, dan 
menghapus akun pengguna. Selain itu, integrasi 
dengan Firestore memastikan bahwa data disimpan 
dan diambil dengan cara yang terstruktur dan 
optimal. Setiap operasi CRUD juga diuji secara 
menyeluruh untuk memastikan bahwa data dapat 
diakses dan dimodifikasi tanpa masalah. 
 

Testing API 
Tahap pengujian API bertujuan memastikan bahwa 
API yang telah selesai dibuat berfungsi dengan baik 
dan siap digunakan dalam lingkungan produksi. Pada 
tahap ini, API dijalankan secara lokal di lingkungan 
pengembangan, dan pengujian dilakukan 
menggunakan aplikasi Postman. Postman adalah sebuah 
software yang memuat fungsi lengkap pengembangan 
sistem dalam mengirimkan dan menerima respons 
server. Software ini mendukung pengembangan 
sistem REST API dengan mengklasifikasi request 
berdasarkan request method, URL, dan parameter-
parameter request. Postman dapat digunakan untuk 
menguji REST API berbasis GUI (Firdaus dan 
Afwani, 2024). Proses pengujian dilakukan dengan 
cara pengujian fungsional. Jenis data yang digunakan 
dalam pengujian fungsional adalah data dummy yang 
dirancang untuk mencerminkan skenario nyata, 
seperti data pengguna dengan berbagai atribut (nama, 
email, password, dan foto profil). 
Proses pengujian dimulai dengan memuat endpoint 
API di Postman. Setiap endpoint diuji untuk 
memastikan bahwa fungsionalitasnya sesuai dengan 
yang diharapkan. Penulis mengirimkan berbagai jenis 
permintaan HTTP (seperti GET, POST, PUT, 
DELETE) ke API, sesuai dengan operasi CRUD 
yang telah diimplementasikan. Sebagai contoh, untuk 
endpoint yang berfungsi membuat pengguna baru, 
pengembang akan mengirimkan permintaan POST 
dengan data pengguna yang sesuai dan memeriksa 
apakah API menanggapi dengan benar dengan 
membuat entri baru di Firestore. 
 

 
Gambar 7. Pengujian API dengan Method POST 

 
Gambar di atas menunjukkan proses pengujian API 
dengan menggunakan metode POST di Postman. 
Berikut penjelasannya: 



949 Oswaldo Da Conceicao, Yasinta O. L. Rema, Budiman Baso, Guido Adolfus Suni / Jurnal JTIK (Jurnal Teknologi Informasi dan 
Komunikasi), 9 (3) 2025, 944-955 

  
 
 

 

1) Endpoint:  

URL yang digunakan adalah 
http://localhost:3000/users/, yang menunjukkan 
bahwa penulis sedang melakukan permintaan 
POST ke endpoint /users pada server lokal yang 
berjalan di port 3000. 

2) Body Request 

Penulis mengirimkan data dengan menggunakan 
format form-data, yang biasanya digunakan untuk 
mengirim data multipart, termasuk file. Ada 
empat kunci yang dikirimkan dalam permintaan 
ini:  

a) name: diisi dengan nilai "pengguna". 

b) email: diisi dengan nilai 
"ussertest@gmail.com". 

c) password: diisi dengan nilai "123123". 

d) photo: diisi dengan file bernama "profil-
picture.png". 

3) Response 

Status respons adalah ‘201 Created’ yang 
menunjukkan bahwa permintaan POST telah 
berhasil dibuat di server. Response body 
menunjukkan bahwa pengguna telah berhasil 
dibuat dengan ID ‘DUJnsGayDd’, yang dapat 
digunakan untuk mengidentifikasi pengguna 
tersebut di dalam sistem. Dari response yang 
diterima dari server dapat diambil kesimpulan 
bahwa API sudah berjalan dengan normal dan 
tanpa kendala. Jika diperiksa, data pengguna juga 
sudah terdapat dalam Firestore dan Bucket Cloud 
Storage, seperti pada Gambar 7. 

 

 
Gambar 8. Data User pada Firestore 

 

 
Gambar 9. Data User pada Bucket Cloud Storage 

 

 
Gambar 10. Pengujian API dengan Method GET 

 
Gambar di atas menunjukkan proses pengujian API 
dengan menggunakan metode GET di Postman. 
Berikut penjelasannya: 

1) Endpoint 

Penulis mengakses endpoint yang sama dengan 
yang digunakan saat POST, yaitu 
http://localhost:3000/users/. Namun, untuk 
mendapat data spesifik dari pengguna yang baru 
dibuat, penulis menambahkan ID pengguna yang 
diterima dalam respons POST sebelumnya sebagai 
parameter URL sehingga menjadi 
http://localhost:3000/users/DUJnsGayDd. 

2) Body Request 

Tidak ada body yang perlu dikirimkan dengan 
metode GET. Cukup panggil endpoint tersebut. 

3) Response 

Status respons adalah ‘200 OK’ yang menunjukkan 
bahwa permintaan GET telah berhasil di server. 
Server akan mengirimkan data pengguna dalam 
format JSON, yang berisi informasi mengenai data 
pengguna. 

 



950 Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 9 (3) 2025, 944-955      
 

 

 

 
Gambar 11. Pengujian API dengan Method PUT 

 
Gambar di atas menunjukkan proses pengujian API 
dengan menggunakan metode PUT di Postman. 
Berikut penjelasannya: 

1) Endpoint 

Penulis akan menggunakan endpoint yang sama 
seperti saat mengakses data pengguna dengan 
metode GET, yaitu 
http://localhost:3000/users/DUJnsGayDd. Di 
sini, DUJnsGayDd adalah ID pengguna yang 
ingin penulis perbarui. 

2) Body Request 

Dalam metode PUT, penulis akan mengirimkan 
body yang berisi data yang ingin diperbarui. Penulis 
ingin mengganti name dari "pengguna" menjadi 
"user". 

3) Response 

Status respons adalah ‘200 OK’ dengan pesan 
response “user updated successfully” yang 
menunjukkan bahwa data pengguna telah berhasil 
diperbarui di server. 

 

 
Gambar 12. Pengujian API dengan Method 

DELETE 
 
Gambar di atas menunjukkan proses pengujian API 
dengan menggunakan metode DELETE di Postman. 
Berikut penjelasannya: 

1) Endpoint 

Penulis akan menggunakan endpoint yang sama 

seperti saat melakukan pengujian GET dan PUT, 
yaitu http://localhost:3000/users/DUJnsGayDd. 
Di sini, “DUJnsGayDd” adalah ID pengguna yang 
ingin penulis hapus. 

2) Body Request 

Sama seperti metode GET, tidak perlu 
mengirimkan body request saat menggunakan 
metode DELETE. Cukup kirim permintaan ke 
endpoint dengan ID yang ingin dihapus. 

3) Response 

Status respons adalah ‘200 OK’ dengan pesan 
response “user deleted successfully” yang 
menunjukkan bahwa data pengguna telah berhasil 
dihapus. 

 
Deploy API ke Cloud Run 
Proses deploy aplikasi ke Google Cloud Run adalah 
langkah penting yang membawa API dari lingkungan 
pengembangan lokal ke lingkungan produksi yang 
aman dan dapat diakses oleh pengguna. Cloud Run 
merupakan sebuah teknologi berbasis container yang 
memungkinkan penggunanya untuk memilih apakah 
aplikasi container akan dijalankan dengan menggunakan 
Cloud Run yang dikelola oleh Google atau dijalankan 
di atas Google Kubernetes Engine (GKE) dengan 
menggunakan Cloud Run on GKE (Hafizin, 2024). 
Berikut ini adalah tahapan rinci dari proses tersebut. 

1) Cloning Repository di Cloud Shell 

Langkah pertama adalah meng-kloning repositori 
GitHub yang berisi kode sumber API ke Cloud 
Shell, sebuah terminal berbasis web yang disediakan 
oleh Google Cloud. Ini memungkinkan akses 
langsung ke resource GCP. 

2) Membuat Image Repository di Artifact Registry 

Artifact Registry adalah tempat penyimpanan Docker 
images sebelum di-deploy ke Cloud Run. Untuk 
membuat Image Repository di Artifact Registry, 
navigasi ke Google Cloud Console dan buat repositori 
baru. Pilih "Docker" dan penulis memberi nama 
“gencara-app” untuk backend dan “ml-gencara” 
untuk machine learning API. Langkah ini menyiapkan 
lokasi di mana Docker images akan disimpan. 

3) Membuat Dockerfile 

Di dalam direktori proyek yang sudah dikloning, 
sebuah Dockerfile dibuat. Dockerfile ini adalah skrip 
yang menjelaskan bagaimana aplikasi akan 
dibangun ke dalam image Docker. File ini biasanya 
berisi instruksi untuk menarik image dasar 



951 Oswaldo Da Conceicao, Yasinta O. L. Rema, Budiman Baso, Guido Adolfus Suni / Jurnal JTIK (Jurnal Teknologi Informasi dan 
Komunikasi), 9 (3) 2025, 944-955 

  
 
 

 

(misalnya, Node.js untuk aplikasi Express.js), 
menginstal dependensi, dan mengatur environment 
yang dibutuhkan untuk menjalankan aplikasi. Isi 
Dockerfile untuk kedua API dapat dilihat pada 
Gambar 13 dan Gambar 14. 

 

 
Gambar 13. Dockerfile untuk Backend 

 

 
Gambar 14. Dockerfile untuk Machine Learning 

 
Build Docker Image 
Setelah Dockerfile dibuat, langkah berikutnya adalah 
membangun Docker image dari aplikasi menggunakan 
perintah berikut: 

 
Gambar 15. Command Build Docker Image Backend 

 
Untuk API machine learning, menggunakan perintah 
berikut: 

 

 
Gambar 16. Command Build Docker Image Machine 

Learning 
 

Perintah ini membuat Docker image lokal dari aplikasi 
dan menandainya (tag) dengan nama yang sesuai 
(gencara-app:1.0 dan ml-gencara:1.0). 
 
Push Docker Image ke Artifact Registry 
Setelah Docker image dibangun, langkah selanjutnya 
adalah mendorong (push) image tersebut ke Artifact 
Registry dengan menggunakan perintah: 

 

 
Gambar 17. Command Push Docker Image Backend 

 
Untuk API machine learning menggunakan perintah 
berikut: 
 

 
Gambar 18. Command Push Docker Image Machine 

Learning 
 
Dengan perintah ini, Docker image akan diunggah ke 
Artifact Registry yang telah dibuat sebelumnya, sehingga 
siap untuk di-deploy ke Cloud Run. 
 
Deploy ke Cloud Run 
Langkah terakhir adalah men-depoloy aplikasi ke Google 
Cloud Run. Ini dilakukan dengan perintah “gcloud” 
berikut: 
 

 
Gambar 19. Command Deploy Backend 

 
Untuk API machine learning menggunkana perintah 
berikut: 

 

 
Gambar 20. Command Deploy Backend 

 
Perintah ini melakukan beberapa hal: pertama, ia 
memberitahu Cloud Run untuk membuat layanan baru 
bernama gencara-app dan ml-gencara, yang akan 
menggunakan Docker image yang telah penulis push ke 
Artifact Registry. Perintah --allow-unauthenticated pada 
deploy machine learning API memungkinkan akses publik 
ke layanan ini. 
 



952 Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 9 (3) 2025, 944-955      
 

 

 

 
Gambar 21. Cloud Run Services 

 
Setelah perintah ini dieksekusi, Cloud Run akan 
mengatur infrastruktur yang dibutuhkan, seperti load 
balancing dan autoscaling, sehingga aplikasi dapat 
berjalan di cloud seperti pada Gambar 21 dengan 
performa optimal dan dapat diakses secara publik 
melalui URL yang dihasilkan oleh Cloud Run. 
Layanan Cloud Run yang sudah berjalan dapat dilihat 
pada Gambar 22 dan Gambar 23. 

 

 
Gambar 22. Cloud Run Backend 

 

 
Gambar 23. Cloud Run Machine Learning 

 

 
Gambar 24. Load Test Hasil Deploy API 

 
Hasil load test menunjukkan performa API yang cukup 
baik selama pengujian lima menit dengan total 7.875 
request atau sekitar 25,64 request per detik. Rata-rata 
waktu respons API adalah 97 ms, yang menandakan 
bahwa API merespons dengan cepat, terutama karena 
error rate tercatat 0,00%, artinya tidak ada request yang 
gagal. Grafik menunjukkan peningkatan request di awal 
pengujian, tetapi segera stabil setelah itu. Setiap 
endpoint yang diuji, termasuk POST, GET, PUT, dan 
DELETE, memiliki waktu respons rata-rata di bawah 
100 ms, dengan variasi kecil antara 84 ms hingga 99 
ms. Namun, endpoint POST Machine Learning Model 
menunjukkan waktu respons yang sedikit lebih tinggi, 
yaitu rata-rata 124 ms, dan terdapat outlier dengan 
waktu respons maksimum hingga 8.023 ms, 
dikarenakan proses ini lebih berat. Meski demikian, 
tidak ada error pada endpoint tersebut. Secara 
keseluruhan, hasil load test ini menunjukkan bahwa 
API mampu menangani beban dengan stabil dan 
responsif. Hasil pengetesan API yang sudah dideploy 
di Cloud Run dapat dilihat pada Gambar 24. 
 
Penyusunan Dokumentasi API 
Dalam pembuatan dokumentasi API backend yang 
sudah selesai dikembangkan dan dideploy, penulis 
menggunakan Postman sebagai alat utama. Postman 
tidak hanya memfasilitasi pengujian API, tetapi juga 
sangat efektif dalam menghasilkan dokumentasi yang 
nantinya akan digunakan oleh tim mobile development 
dalam pengembangan aplikasi. Proses dimulai dengan 
mengorganisasi semua endpoint API ke dalam satu 
Collection di Postman. Penulis mengelompokkan 
endpoint berdasarkan fungsionalitasnya, seperti 
endpoint untuk operasi pengguna (registrasi, login, 
dan pengelolaan profil) dan endpoint untuk machine 
learning. Setiap endpoint di Collection ini disertai dengan 
deskripsi rinci yang menjelaskan tujuan, metode 
HTTP yang digunakan, serta parameter yang 
diperlukan dalam request. 



953 Oswaldo Da Conceicao, Yasinta O. L. Rema, Budiman Baso, Guido Adolfus Suni / Jurnal JTIK (Jurnal Teknologi Informasi dan 
Komunikasi), 9 (3) 2025, 944-955 

  
 
 

 

Pembahasan 
Berdasarkan hasil pengujian load test, API yang 
dikembangkan menunjukkan performa yang baik 
dalam menangani beban. Dalam lima menit 
pengujian, API mampu menangani total 7.875 request, 
dengan rata-rata sekitar 25,64 request per detik. Rata-
rata waktu respons sebesar 97 ms menunjukkan 
bahwa API dapat merespons permintaan dengan 
cepat, yang sangat penting dalam aplikasi mobile yang 
memerlukan kecepatan dan responsifitas. Hasil ini 
sesuai dengan temuan Fujiyanti, Suranegara, dan 
Ichsan (2024), yang mencatatkan bahwa cloud-based 
services seperti Cloud Run dapat memberikan 
performa yang optimal dalam menangani request 
dalam jumlah besar, dengan waktu respons yang 
sangat cepat. Kelebihan lain dari pengujian ini adalah 
tercatatnya error rate 0,00%, yang menandakan bahwa 
tidak ada permintaan yang gagal selama pengujian. 
Hal ini mencerminkan stabilitas dan keandalan API 
dalam menghadapi traffic yang tinggi, sebagaimana 
disarankan oleh Kejora dan Susetyo (2024) dalam 
studi mereka tentang penerapan Cloud Run untuk 
pengembangan aplikasi web. Hasil ini juga 
mengindikasikan bahwa API mampu mengelola traffic 
yang lebih besar secara efisien, yang penting untuk 
memastikan pengalaman pengguna yang baik dan 
aplikasi yang dapat diandalkan dalam skala besar. 
 
Namun, hasil pengujian juga menunjukkan adanya 
sedikit lonjakan pada waktu respons endpoint POST 
Machine Learning Model, dengan waktu respons rata-
rata 124 ms, yang lebih tinggi dibandingkan dengan 
endpoint lainnya. Ini menunjukkan bahwa proses 
machine learning yang dijalankan di backend 
memerlukan waktu komputasi lebih lama, yang juga 
sejalan dengan temuan oleh Abraham dan Yang 
(2023), yang menunjukkan bahwa model berbasis 
machine learning dapat mempengaruhi performa API, 
terutama ketika membutuhkan pemrosesan data yang 
lebih berat. Walaupun demikian, tidak ada error pada 
endpoint tersebut, menunjukkan bahwa API dapat 
tetap stabil meskipun dengan peningkatan 
kompleksitas proses. Proses pengujian yang 
dilakukan menggunakan Postman untuk setiap metode 
HTTP (POST, GET, PUT, DELETE) sangat 
penting dalam memastikan bahwa semua endpoint 
berfungsi sesuai dengan yang diharapkan. Menurut 
Ehsan et al. (2022), pengujian API menggunakan 
metodologi yang tepat sangat penting untuk 

memastikan bahwa fungsionalitas API berjalan 
dengan baik di berbagai skenario. Pengujian 
fungsional yang dilakukan dalam penelitian ini 
menggunakan data dummy yang mencakup nama, 
email, password, dan foto profil, memberikan 
gambaran yang jelas tentang cara kerja API dalam 
kondisi yang lebih realistis. Selain itu, dokumentasi 
API yang disusun menggunakan Postman memberikan 
keuntungan besar dalam pengembangan aplikasi, 
karena mendokumentasikan setiap endpoint secara 
terperinci, termasuk tujuan, metode HTTP yang 
digunakan, serta parameter yang diperlukan dalam 
setiap request. Hal ini sejalan dengan penelitian oleh 
Kurniawan et al. (2020), yang menekankan pentingnya 
dokumentasi API yang baik untuk memastikan bahwa 
pengembang dapat dengan mudah memahami dan 
mengintegrasikan API dalam aplikasi mereka. Dengan 
dokumentasi yang terorganisir, tim pengembang 
mobile dapat dengan mudah mengakses informasi 
yang diperlukan untuk mengintegrasikan API dalam 
aplikasi mereka tanpa kebingungannya. Hasil dari load 
test dan dokumentasi API yang dikembangkan 
menunjukkan bahwa API yang dibangun mampu 
menangani beban dengan baik dan responsif, serta 
dapat diintegrasikan dengan mudah ke dalam aplikasi 
mobile untuk mempermudah interaksi dengan 
pengguna. 
 
 

4. Kesimpulan 
 
API berhasil dirancang, dikembangkan, dan di-deploy 
ke Cloud Run, dimulai dari perancangan arsitektur 
backend hingga integrasi dengan Firestore dan Google 
Cloud Storage. Proses pengujian memastikan API stabil, 
dengan waktu respons rata-rata 97 ms dan 
kemampuan menangani hingga 7.875 permintaan 
dalam lima menit. Penelitian ini menunjukkan bahwa 
layanan Google Cloud Platform dapat mendukung 
pengembangan API yang efisien, skalabel, dan mudah 
diimplementasikan, sehingga menjadi solusi bagi 
pengembangan aplikasi berbasis cloud. Kontribusi 
utama penelitian ini adalah menunjukkan keberhasilan 
penerapan teknologi cloud dalam pengembangan API, 
yang dapat menjadi acuan untuk proyek serupa. 
Penelitian lanjutan disarankan untuk 
mengintegrasikan CI/CD pipelines untuk 
meningkatkan efisiensi dan mengurangi risiko human 
error dalam proses pengembangan dan deployment. 



954 Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), 9 (3) 2025, 944-955      
 

 

 

5. Daftar Pustaka 
 

Abraham, A., & Yang, J. (2023). Analyzing the 
system features, usability, and performance of 
a containerized application on serverless cloud 
computing systems. Research Square. 
https://doi.org/10.21203/rs.3.rs-
3167840/v1. 

 
Azizah, E. N., Resmi, M. G., & Alam, S. (2023). 

Penerapan Metode Design Thinking Pada 
Perancangan User Interface Aplikasi Mobile 
Pengenalan Bahasa Isyarat Indonesia 
(Bisindo). Jurnal Mnemonic, 6(1), 71-76. 
https://doi.org/10.36040/mnemonic.v6i1.57
11. 

 
Bachtiar, D. H., et al. (2024). Perancangan back-end 

API pada aplikasi mobile Fruityfit 
menggunakan framework Express JS. Mars: 
Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu 
Komputer, 2(3), 107–117. 
https://doi.org/10.61132/mars.v2i3.138. 

 
Badrul, M. (2021). Penerapan metode waterfall 

Untuk Perancangan sistem informasi inventory 
Pada Toko Keramik bintang 
terang. PROSISKO J. Pengemb. Ris. dan Obs. Sist. 
Komput, 8(2), 57-52. 

 
Borra, P. (2024). A survey of Google Cloud Platform 

(GCP): Features, services, and applications. 
International Journal of Advanced Research in Science, 
Communication and Technology, 191–199. 
https://doi.org/10.48175/ijarsct-18922. 

 
Ehsan, A., Abuhaliqa, M. A. M. E., Catal, C., & 

Mishra, D. (2022). RESTful API testing 
methodologies: Rationale, challenges, and 
solution directions. Applied Sciences (Switzerland), 
12(9), 1–22. 
https://doi.org/10.3390/app12094369. 

 
Falah, R. F., & Komarudin, M. (2023). Perancangan 

Microservice Berbasis REST API pada Google 
Cloud Platform Menggunakan Nodejs dan 
Python. Jurnal Informatika dan Teknik Elektro 
Terapan, 11(3s1). 

 

Falani, A. Z. (2023). Pengembangan Aplikasi Bahasa 
Isyarat Indonesia Berbasis Realtime Video 
Menggunakan Model Machine Learning. JIKA 
(Jurnal Informatika), 7(1), 89-96. 
http://dx.doi.org/10.31000/jika.v7i1.7277 

 
Firdaus, M., & Afwani, R. (2024). Pengembangan 

Restful API untuk Aplikasi Klasifikasi Jenis 
Tanah Berbasis Mobile Pada Google 
Cloud. Jurnal Teknologi Informasi, Komputer, dan 
Aplikasinya (JTIKA), 6(1), 275-287. 
https://doi.org/10.29303/jtika.v6i1.335. 

 
Fujiyanti, V., Suranegara, G. M., & Ichsan, I. N. 

(2024). Comparative analysis of server-based 
and serverless service performance on Google 
Cloud Platform (GCP) (Case study: Machine 
learning model deployment). Journal of 
Information Systems and Informatics, 6(2), 1172–
1194. 
https://doi.org/10.51519/journalisi.v6i2.773. 

 
Ginanjar, H. P., & Setiyadi, A. (2020). Penerapan 

Teknologi Cloud Computing Pada Katalog 
Produk Di Balatkop Jawa Barat. Komputa: Jurnal 
Ilmiah Komputer Dan Informatika, 9(1), 25-33. 
https://doi.org/10.34010/komputa.v9i1.3722. 

 
Gupta, B., Mittal, P., & Mufti, T. (2021). A review on 

Amazon Web Service (AWS), Microsoft Azure 
& Google Cloud Platform (GCP) services. 
https://doi.org/10.4108/eai.27-2-
2020.2303255 

 
Hafizin, M. (2024). Perancangan dan implementasi 

API pada aplikasi deteksi mata katarak 
menggunakan Google Cloud Run. Mars: Jurnal 
Teknik Mesin, Industri, Elektro Dan Ilmu Komputer, 
2(4), 172–180. 

 
Irfansyah, M. B., Arief, S. N., & Nugraha, B. S. D. 

(2024). DESAIN DAN ARSITEKTUR 
SERVERLESS CLOUD COMPUTING 
PADA APLIKASI PENGHITUNG KALORI 
MAKANAN BERBASIS MOBILE 
MENGGUNAKAN LAYANAN GOOGLE 
CLOUD PLATFORM. JATI (Jurnal Mahasiswa 
Teknik Informatika), 8(4), 6090-6097. 
https://doi.org/10.36040/jati.v8i4.10180. 



955 Oswaldo Da Conceicao, Yasinta O. L. Rema, Budiman Baso, Guido Adolfus Suni / Jurnal JTIK (Jurnal Teknologi Informasi dan 
Komunikasi), 9 (3) 2025, 944-955 

  
 
 

 

Kejora, C. B., & Susetyo, Y. A. (2024). Analisis 
Perbandingan Compute Engine dan Cloud 
Run sebagai lingkungan Pengembangan 
Aplikasi Web di Google Cloud 
Platform. Jurasik (Jurnal Riset Sistem Informasi 
dan Teknik Informatika), 9(1), 491-503. 
http://dx.doi.org/10.30645/jurasik.v9i1.756. 

 
Kurniawan, I., Humaira, & Rozi, F. (2020). REST 

API menggunakan NodeJS pada aplikasi 
transaksi jasa elektronik berbasis Android. 
JITSI: Jurnal Ilmiah Teknologi Sistem Informasi, 
1(4), 127–132. 
https://doi.org/10.30630/jitsi.1.4.18. 

 
Prasetya, A., Arganata, M. D., & Sutabri, T. (2024). 

Analisis Perbandingan Antara Teknologi 
Cloud Computing Dan Infrastruktur 
Komputer Tradisional Dalam Konteks 
Bisnis. Scientifica: Jurnal Ilmiah Sains Dan 
Teknologi, 2(7), 143-147. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sholawati, M., Auliasari, K., & Ariwibisono, F. X. 
(2022). Pengembangan aplikasi pengenalan 
bahasa isyarat abjad Sibi menggunakan metode 
Convolutional Neural Network (CNN). JATI 
(Jurnal Mahasiswa Teknik Informatika), 6(1), 134–
144. https://doi.org/10.36040/jati.v6i1.4507. 

 
Wardhana, W. G., Arwani, I., & Rahayudi, B. (2020). 

Implementasi Teknologi Restful Web Service 
Dalam Pengembangan Sistem Informasi 
Perekaman Prestasi Mahasiswa Berbasis 
Website (Studi Kasus: Fakultas Teknologi 
Pertanian Universitas Brawijaya). Jurnal 
Pengembangan Teknologi Informasi dan Ilmu 
Komputer, 4(2), 680-689. 

 
Zani, A. W. R., Kartini, K., & Rizki, A. M. (2024). 

Rancang bangun aplikasi mobile bank sampah 
menggunakan framework React Native dan 
REST API. Uranus: Jurnal Ilmiah Teknik Elektro, 
Sains dan Informatika, 2(3), 112–124. 
https://doi.org/10.61132/uranus.v2i3.254. 

 
 
 


