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a b s t r a c t   

Today's society really pays attention to air quality because the impact of exposure to pollutants in the air is starting to be 
felt. PM 2.5 pollutants are very dangerous because their small size can penetrate the alveoli of human lungs. The value 
calculation of the Air Quality Index (AQI) is important to prepare mitigation and defensive measures to reduce the 
negative impact of air quality and as a basis for future policymaking. Several method comparisons have been carried out 
by researchers to predict AQI. However, researchers have not studied much regarding the use of meteorological factors 
in the form of average air temperature (°C), average air humidity (percent), and average wind speed (m/s) in forecasting 
AQI values, even though meteorological factors have a significant link, according to previous researchers. This research 
forecasts AQI using the ARIMAX method, which includes meteorological factors as exogenous variables, using daily 
AQI PM 2.5 data in Central Jakarta. The best modeling of the data is ARIMA (1,1,1) without X and ARIMAX (1,1,1). 
Based on the calculation of AIC, BIC, RMSE, and MAPE values, ARIMAX (1,1,1) modeling produces better forecasting, 
so it can be concluded that forecasting involving meteorological factors can make forecasting more precise. Predicting 
AQI using ARIMAX with upcoming meteorological factors is beneficial, as precise prediction results can assist in policy-
making to prevent the adverse impacts of air quality on public health. In future research, other meteorological factors 
could be studied and combined with other modeling besides ARIMA. 

 

a b s t r a k   

Masyarakat saat ini sangat memperhatikan kualitas udara karena dampak paparan polutan di udara mulai terasa. Polutan 
PM 2.5 sangat berbahaya karena ukurannya yang kecil dapat menembus alveoli paru-paru manusia. Penghitungan nilai 
Indeks Kualitas Udara (AQI) penting untuk mempersiapkan langkah mitigasi dan defensif guna mengurangi dampak 
negatif kualitas udara dan sebagai dasar pengambilan kebijakan di masa depan. Beberapa perbandingan metode telah 
dilakukan peneliti untuk memprediksi AQI. Namun peneliti belum banyak mengkaji mengenai penggunaan faktor 
meteorologi berupa suhu udara rata-rata (°C), kelembaban udara rata-rata (persen), dan kecepatan angin rata-rata (m/s) 
dalam meramalkan nilai AQI, padahal faktor meteorologi memiliki hubungan yang signifikan, menurut peneliti 
sebelumnya. Penelitian ini meramalkan AQI dengan menggunakan metode ARIMAX yang memasukkan faktor 
meteorologi sebagai variabel eksogen dengan menggunakan data harian AQI PM 2.5 di Jakarta Pusat. Pemodelan data 
terbaik adalah ARIMA (1,1,1) tanpa X dan ARIMAX (1,1,1). Berdasarkan perhitungan nilai AIC, BIC, RMSE, dan 
MAPE, pemodelan ARIMAX (1,1,1) menghasilkan peramalan yang lebih baik, sehingga dapat disimpulkan bahwa 
peramalan yang melibatkan faktor meteorologi dapat membuat peramalan menjadi lebih tepat. Memprediksi AQI 
menggunakan ARIMAX dengan faktor meteorologi yang akan datang sangatlah bermanfaat, karena hasil prediksi yang 
tepat dapat membantu dalam pengambilan kebijakan untuk mencegah dampak buruk kualitas udara terhadap kesehatan 
masyarakat. Pada penelitian selanjutnya, faktor meteorologi lain dapat dipelajari dan dikombinasikan dengan pemodelan 
lain selain ARIMA. 
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1. Introduction 
 
Humans need air to breathe, so air is an important 
factor supporting human life. Over the last few 
decades, researchers have proven that poor air quality 
can encourage respiratory diseases that cause death 
[1]. This research is supported by evidence reports 
from the World Health Organization (WHO) that 
exposure to pollutants and poor air quality can cause 
cardiovascular mortality and morbidity, which can 
result in a decrease in acute respiratory diseases in 
future generations [2]. Air quality is getting worse due 
to exposure to particulate matter (PM) and other 
harmful substances resulting from industrialization 
and urbanization [3]-[5]. In recent decades, public 
attention about the importance of healthy air has 
increased. Especially in the capital city of Jakarta, 
people are starting to feel the many impacts of bad 
air. It is necessary to provide daily data and accurate 
forecast data so that the public has an idea of air 
quality conditions. 
 
Air Quality Index (AQI) and PM 2.5 are two 
important indicators among pollution indices. AQI is 
a measurement metric used to standardize values and 
understand air quality and pollutant levels in it [4]. In 
Indonesia, AQI is calculated using a pollutant 
concentration measurement tool. AQI is calculated 
with reference to the new ambient air quality 
standard (GB3095-2012), which covers six 
pollutants, including sulfur dioxide (SO2), nitrogen 
dioxide (NO2), PM 2.5, PM 10, ozone (O3), and 
carbon monoxide (CO). One of the pollutants 
calculated is PM 2.5. PM 2.5 pollutant is dangerous 
for humans because its size is very small, namely 
below 2.5 μm. The human body is unable to filter 
small particles; as a result, they can enter the alveoli 
in the lungs and even penetrate the lungs and then 
exit into the bloodstream, causing significant health 
problems [7]. Daily AQI 2.5 data in Central Jakarta 
shows the average change in trend as the day 
changes. For the general public, AQI is an important 
index for understanding whether air quality is good 
or bad. Communities need AQI values to take 
defensive steps so as not to be affected by bad air 
quality. 
 
Poor air quality with high levels of PM2.5 pollutants 
in the long term can affect human health [8], so 
estimates of air quality are needed to determine 

appropriate policies in the future. Several researchers 
have studied AQI (Air Quality Index) forecasting 
using many methods. Mathematically, in air quality 
forecasting, there are two types of models used: 
deterministic models and empirical models. 
Deterministic models, such as chemical transport 
models (CTMs), apply basic principles to simulate the 
atmospheric chemical and physical processes involved 
in the emission, transport, and transformation of air 
pollution. However, due to the complexity of 
chemical and transport processes in the atmosphere, 
these models have significant estimation and 
uncertainty, leading to a lack of accuracy compared to 
empirical models of air quality that have been 
developed, fine-tuned for specific locations, and 
trained with local meteorological data [9]. In the 
context of empirical models, various statistical models 
are used for air quality indices. For example, there are 
models such as ARIMA (Autoregressive Integrated 
Moving Average), Multiple Linear Regression (MLR), 
Artificial Neural Networks (ANN), Support Vector 
Regression (SVR), and also a hybrid model. 
 
The ARIMA model is a classic technique in statistical 
analysis that is used to understand non-linear time 
series data [10]. The ARIMA model, which is a 
combination of autoregression and moving average, 
utilizes previous values in a time series to make 
projections about the future. The ARIMA approach 
is considered useful because it is able to reflect the 
temporary persistence of air pollutants in the 
atmosphere in the model, so ARIMA is a powerful 
and useful statistical tool in evaluating and forecasting 
air pollution levels [11]. In previous research, the use 
of the ARIMA model for forecasting was usually 
combined with other models such as ARIMA-LTSM 
[12] or hybrid ARIMA [13] to increase the Air Quality 
Index's (AQI) forecasting precision. However, there 
is still very little research that examines the use of the 
ARIMAX model (Autoregressive Integrated Moving 
Average with Explanatory Variable) to perform AQI 
prediction. 
 
According to several studies, meteorological factors 
include minimum air temperature (°C), maximum air 
temperature (°C), average air temperature (°C), 
average air humidity (percent), duration of sunlight 
(hours), speed Maximum wind (m/s) and average 
wind speed (m/s) significantly influence Air Quality 
[14]. This is also supported by studies that 
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unfavorable meteorological factors can influence the 
formation and growth of new air pollutants as well as 
the ability of the atmosphere to disperse air 
pollutants. Meteorological factors are significant 
predictors in estimating the concentration of 
submicron particles in the atmosphere which are 
used as indicators for AQI measurements [15]. This 
shows that forecasting AQI by considering 
meteorological factors is a good thing to do, several 
previous studies have also suggested considering 
other factors when forecasting. The aim of this 
research is to provide an overview of air quality 
conditions, build an air quality forecasting model and 
explore the effectiveness of meteorological factors 
which are exogenous variables in predicting air 
quality in Central Jakarta. 
 
In order to take effective action as a preventive 
measure to avoid the impact of poor air quality, it is 
important to forecast using other exogenous variable 
approaches that influence AQI to be able to 
understand AQI better. Therefore, this research 
focuses on describing air quality conditions, building 
an air quality forecasting model using ARIMA(X), 
and comparing the precision of air quality forecasting 
results with the ARIMA and ARIMA(X) models. The 
data used is daily AQI PM 2.5 data for the last 2 years 
and seven meteorological factor data in Central 
Jakarta, which is one of the most critical and 
important areas in the capital city of Jakarta with 
quite poor air quality. 
 
This research includes describing and forecasting air 
quality conditions in Central Jakarta, which takes into 
account exogenous variables in the form of 
meteorological factors that have not been widely 
studied. First, this research answers several previous 
studies that found that meteorological factors 
simultaneously influence air quality with the right 
combination of variables. Most previous research, 
such as Wood [16] using data mining; Liu & Guo [17] 
using the LTSM method; and Miri et al. [18] using a 
regression method, only tried one combination of 
meteorological variables. This research will compare 
several combinations of meteorological variables to 
find the combination of meteorological factors that 
most significantly influences air quality in Central 
Jakarta. Second, this research predicts AQI with a 
non-linear method using exogenous variables, which, 
according to several researchers, is more precise than 

deterministic methods. Not many studies have 
studied AQI forecasting using the ARIMAX method; 
previous research has mostly studied AQI forecasting 
using ARIMA or deterministic methods such as [19]–
[21]. Third, this research also looks at whether 
forecasting with ARIMAX provides more precise 
results than regular ARIMA. This research answers 
the assumption from previous research that 
imprecision in AQI forecasting is possible due to the 
influence of meteorological factors in the atmosphere 
[22]. This research is expected to provide benefits and 
become a reference for future forecasting involving 
other meteorological factors to provide more precise 
forecasting. 
 
Air Quality Index (AQI) 
According to reference [23], the Air Quality Index 
(AQI) is a metric used to assess the level of pollution 
in the air in a given area. An essential tool for 
accurately assessing the state of the air in a given 
location is the Air Quality Index (AQI). The air quality 
index is computed using a range of pollutants, 
including carbon monoxide (CO), nitrogen dioxide 
(NO2), sulfur dioxide (SO2), fine particulate matter 
(PM2.5), particulate matter (PM10), and ground-level 
ozone (O3) [24] . Greater values of the index indicate 
poorer air quality and higher levels of pollution in the 
area. On the other hand, a lower index indicates lower 
pollution levels and improved air quality in the area 
[25]. 
 
Fine particulate matter 2.5 (PM2.5) is defined as air 
particles with a diameter of less than 2.5 microns [26]. 
Dust and engineering projects—which typically 
involve bacteria, oxidants, minerals, and other 
elements—are the main sources of these airborne 
particles. Some of them are also legitimate fine 
particles because they are produced by natural 
processes such sandstorms, volcanic eruptions, forest 
fires, and waves [27]. Burning garbage and fossil fuels 
like coal and oil produces derivatives of sulfur and 
nitrogen oxides that are then converted into fine 
particulate matter (PM2.5). Burning fossil fuels also 
releases greenhouse gases into the atmosphere. As a 
result of their continued reliance on coal and oil as 
energy sources, developing nations like Indonesia are 
typically the ones affected. Additionally, the 
technology in use lacks adequate waste gas processing, 
and other energy sources have not been created [27]. 
The oxidation of other exhaust gas pollutants and 
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direct emissions from vehicles are two major sources 
of fine particulate matter (PM2.5), as is tire and brake 
deterioration. Another important source of fine 
particulate matter (PM2.5), particularly in the 
summer, is combustion from heating and culinary 
activities like burning wood. Indoor activities 
including cooking, smoking, and candle lighting can 
also produce PM2.5 emissions [28]. In certain 
environments, indoor PM2.5 concentrations can 
reach hundreds of μg m3. Due to its high liquidity, 
fine particulate matter (PM2.5) during the rainy 
season travels quickly to nearby areas and urban areas 
when air flow is affected, having an impact across a 
larger area [27]. 
 
Human premature death from respiratory and 
cardiovascular disorders is closely correlated with 
both fine particulate matter (PM2.5) and particulate 
matter (PM10) [29]. According to a number of 
studies, tiny particulate matter (PM2.5) poses a 
greater risk than fine particulate matter (PM10). Fine 
particulate matter (PM2.5) is the fifth most deadly 
risk factor for death and is projected to cause 4.2 
million deaths annually worldwide [30]. According to 
reference [31], fine particulate matter (PM2.5) is the 
primary risk factor for respiratory diseases in China, 
accounting for over 1.1 million premature deaths 
from conditions like stroke, ischemic heart disease 
(CHD), lung cancer, lower respiratory tract 
infections, and severe chronic obstructive pulmonary 
disease (COPD). 
 
Meteorology and Air Pollution 
Air pollutants are gases or airborne particulates that 
have diverse chemical and physical compositions, 
causing a range of impacts on air quality that are 
harmful to human health [32]. It is believed that 
weather patterns and air pollution are related, or vice 
versa. Numerous investigations have been conducted 
to examine the connection between air pollution and 
weather patterns [33]. The minimum, maximum, 
average, and average air temperatures as well as the 
amount of sunshine, wind speed, and humidity are all 
considered meteorological parameters. 
 
The lowest temperature attained in a certain place or 
area is referred to as the minimum air temperature. 
When temperatures are often at their lowest 
throughout the day, such as in the morning, 
minimum air temperatures are frequently recorded. 

The highest temperature measured over a given 
duration, typically six, twelve, or twenty-four hours, is 
referred to as the maximum air temperature. Due to 
the heat continuing to build after noon, the air 
temperature reaches its peak about 15.00 on average. 
The highest temperature of the day is typically 
measured once a day around nine in the morning local 
time. The term "average air temperature" describes 
the mean temperature of the atmosphere in a given 
area for a given time frame, like a day, month, or year. 
Water vapor in the air divided by the greatest quantity 
that the air can contain at a given temperature is the 
measure of average air humidity. Different times and 
places have different average humidity levels.  
 
Observer latitude and season have an impact on how 
long sunshine lasts. The sun's course determines how 
long sunlight lasts, while the distance from the 
equator affects how long sunsets last. Air movement 
across a surface in a horizontal direction is known as 
wind speed. This velocity can be expressed as either 
an instantaneous speed (called wind gusts) or an 
average velocity over a 2-minute period. By collecting 
samples and averaging the data, the maximum wind 
speed can be found. samples collected throughout a 
specific time frame. Mean wind speed, which is 
commonly expressed in miles per hour (mph) or 
meters per second (m/s), is the average wind speed 
for a specific time period. 
 
 

2. Research Methods 
 
This research uses secondary data obtained from the 
World Air Quality Project Historical Air Quality Data 
Platform (https://aqicn.org) and the BMKG Online 
Database Center. The data used is daily individual 
AQI data on PM2.5 (µm/m3), minimum air 
temperature (°C), maximum air temperature (°C), 
average air temperature (°C), average air humidity 
(percent), duration of sunlight (hours), maximum 
wind speed (m/s), and average wind speed (m/s) 
from November 1, 2021, to October 31, 2023, so 
there are 760 observations. PM2.5 individual AQI is 
measured using the Beta Attenuation Monitoring 
method. Average air temperature, average air 
humidity, and average wind speed were collected from 
the Kemayoran Meteorological Station. This research 
explores the effectiveness of several meteorological 
factors as exogenous variables in predicting the daily 
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air quality index. The stages that must be carried out 
in this research are explained in Figure 1. Air Quality 
Index data from the World Air Quality Project is 
combined with meteorological data from BMKG 
into one data set. Then it's done by inputting the 
missing value using k-nearest neighbors to make the 
data clean for use in model building. After obtaining 
clean data, model formation and model evaluation 
were carried out to obtain the best model for 
forecasting the Central Jakarta City Air Quality 
Index. 

 

 
Figure 1. Stages of forming a prediction model for 
the Daily Air Quality Index for Central Jakarta City 

 
In calculating the Air Quality Index, various pollutant 
indices (CO, NO2, SO2, PM2.5, PM10, O3, NH3, 
and Pb) are used for calculations. The Air Quality 
Historical Data Platform (the World Air Quality 
Project) only provides Air Quality Index data, which 
is measured based on the PM2.5 and PM10 pollutant 
indices. The data set contains a number of missing 
data values. The availability of the Air Quality Index 
calculated based on the PM2.5 pollutant index is 
better than other pollutant indices. Therefore, the 
PM2.5 pollutant index is the main data for predicting 
the Central Jakarta City Air Quality Index. The 
meteorological variables provided by BMKG consist 
of many variables, such as minimum air temperature, 

maximum air temperature, average air temperature, 
average humidity, rainfall, duration of sunlight, 
maximum wind speed, average wind speed, and 
current wind direction. maximum speed, and 
maximum wind direction. Reference [14] stated that 
meteorological factors consisting of rainfall, intensity 
of solar radiation, wind speed, air humidity, and air 
temperature influence the level of air pollution. 
Another study by reference [34] stated that wind 
speed, air temperature, air pressure, and relative 
humidity influence the level of air pollution. The 
rainfall variable data provided by BMKG contains 
many unmeasurable values. Therefore, the variables 
used as exogenous variables for predicting the Central 
Jakarta City Air Quality Index in this study are 
minimum air temperature, maximum air temperature, 
average air temperature, average air humidity, 
duration of sunlight, maximum wind speed, and 
average wind speed.  
 
After selecting variables and obtaining clean data, it 
was discovered that in the data set there were several 
missing values. The completeness of observation data 
is an important requirement that must be met in 
advanced analyses such as time series analysis [35]. 
There are many ways to deal with missing values. In 
this study, k-NN (k-nearest neighbor) was used to fill 
in missing values (imputing missing values). k-NN can 
replace missing data by using the average value of the 
k nearest neighbors. In the context of the imputation 
of missing data in a time series, k-NN can produce 
accurate estimates by considering the values before 
and after the missing data. The k-NN method was 
chosen because k-NN has been proven to provide the 
best results in reconstructing missing data and makes 
a positive contribution to time series forecasting 
compared to other imputation methods [35]-[36]. The 
results of four experimental cases show that the k-NN 
technique is most effective in reconstructing missing 
data and makes a positive contribution to time series 
forecasting compared to other imputation methods. 
For example, on the CNNpred dataset with the lowest 
loss rate (1.86%), the results show that k-NN widens 
the performance gap compared with other imputation 
methods. Therefore, these results indicate that the k-
NN method has a positive impact on time series 
forecasting analysis and provides better results than 
other imputation methods. Thus, it can be concluded 
that the k-NN imputation results positively influence 
the time series forecasting analysis.  
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There is a limitation to imputation using the k-NN 
method, namely that this method requires calculating 
the distance between missing data points and existing 
data points. Therefore, if there are many dimensions 
or variables in the dataset, calculating these distances 
can become complex and time-consuming. 
Additionally, k-NN is also susceptible to outliers and 
noise in the data, which can affect the imputation 
results. Potential bias in imputation using the k-NN 
method can arise if there are not enough relevant or 
representative data points in the vicinity of the 
missing data points. This can lead to inaccurate 
imputation and affect the performance of the 
forecasting model. However, in this study, the 
limitations and potential bias of imputation using k-
NN can be avoided because the data used in this 
study is daily data on air quality and meteorology, 
which have close inter-temporal characteristics, so 
that the appearance of relevant or representative data 
around the data points is assessed. What is missing is 
enough representation. 
 
In this study, data was imputed using the k-NN 
method with a k value of 5. The data set that was 
imputed using k-NN is shown in Figure 2. 

 
Figure 2. Graph of the data set after imputing using 

k-NN 
 
The ARIMA (Autoregressive Integrated Moving 
Average) model is the most commonly used method 
in time series analysis. ARIMA combines the 
concepts of autoregression and moving average to 
provide a prediction value formed from a linear 
combination of previous variable values and 
prediction errors [35]. ARIMA consists of three 
parameters: the autoregressive order p represents the 
number of lags of Y that will be used as a predictor, 
the integration order d states the number of 
differentiation times to make the data stationary, and 

q represents the moving average order, which 
represents the number of forecast errors in the past 
period that must be included in the ARIMA model 
[38]. In general, ARIMA can be described using the 
following mathematical model. 
 

𝑌𝑡  =  𝑐 +  𝜙1𝑌𝑡−1  + · · ·  +𝜙𝑝𝑌𝑡−𝑝  + 𝜃1𝜀𝑡−1  + · 

· ·  + 𝜃𝑞𝜀𝑡−𝑞  +  𝜀𝑡 

 
Where t is the observation value at time t, p is the 
parameter of the autoregressive component of the 
model, q is the moving average component 
parameter, and t is the error in the t-th period [36]. 
 
Not much different, the ARIMAX model is a 
development of the ARIMA model. This model 
develops the ARIMA model, whose predictions are 
not only influenced by a linear combination of 
previous variable values and prediction errors but are 
also influenced by exogenous variables marked with 
the letter X [37]. The inclusion of exogenous variables 
that are proven to influence the predicted value can 
improve forecasting ability [39]. In general, ARIMAX 
can be described using the following mathematical 
model. 
 

𝑌𝑡  =  𝑐 + 𝛽1𝑋1,𝑡 +· · · +𝛽𝑠𝑋𝑠,𝑡 +  𝜙1𝑌𝑡−1  + · · 
·  +𝜙𝑝𝑌𝑡−𝑝  +  𝜃1𝜀𝑡−1  + · · 

·  + 𝜃𝑞𝜀𝑡−𝑞  +  𝜀𝑡 

 
where t is the observation value at time t, s is the 
parameter for the independent variable Xs, p is the 
parameter of the autoregressive component of the 
model, q is the moving average component 
parameter, and t is the error in the t-th period [37]. 
 
The exogenous variables that will be used in building 
the model to help predict the air quality index are 
several meteorological variables in the form of 
minimum air temperature (Tn), maximum air 
temperature (Tx), average air temperature (Tavg), 
average air humidity (RH_avg), duration of sunlight 
(ss), maximum wind speed (ff_x) and average wind 
speed (ff_avg). 
 
In the ARIMA model, the selection needs to be made 
by selecting the best model among the possible 

ARIMA models that exist. The model lag level (𝑝,𝑑,𝑞) 
can be selected based on the Akaike information 
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criterion (AIC), corrected Akaike information 
criterion (AICc), or Bayesian information criterion 
(BIC) values [40]. The mathematical model of these 
three criteria is as follows: 
 

𝐴𝐼𝐶 = −2 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐿)  + 2𝑘, 
𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑘(𝑘 + 1)𝑛 − 𝑘 − 1, 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 𝑘𝑙𝑜𝑔(𝑛), 
 
where L is the likelihood function of the data in the 
model, n is the sample size, and k are the total 
parameters in the model, with k=p+q+d+1 if the 
model intercept is zero, and k=p+q+d if the model 
intercept is not zero [41]. 
 
In this study, Root Mean Square Error (RMSE) and 
Mean Average Percentage Error (MAPE) were 
calculated to assess the forecasting accuracy of each 
model. RMSE is a measure to measure the difference 
between the values predicted by a time series model 
and the actual data. RMSE can be written as the 
following equation. 
 

𝑅𝑀𝑆𝐸 = √
∑ 𝜀𝑡

2

𝑛
 

 
By forecasting error at the t and nth times, many 
observation time periods are predicted [42]. MAPE 
is another frequently used measure, calculating the 
average of the percentage differences between 
predicted values and actual values. MAPE can be 
written as the following equation. 
 

𝑀𝐴𝑃𝐸 =
∑

|𝜀𝑡|
𝑋𝑡

𝑛
 

 
where t forecasting error at time t, n many 
observation time periods are forecast, and Xt is the 
actual value at time t [42]. 
 
To get the best ARIMA model, there are several 
assumptions that must be met on the residuals, 
namely White Noise, normal distribution test, 
residual average test, and arch test. The White Noise 
Test can be used using the Ljung-Box test. The 
Normal Distribution Assumption Test is carried out 
to determine whether the residuals are normally 
distributed or not. The Shapiro-Wilk Test is not used. 

The average residual test uses the t test to determine 
whether the residual is around 0. Meanwhile, the arch 
test is carried out to test whether the residual is 
homogeneous. 
 
 

3. Result and Discussion 
 
The following is an overview of the Central Jakarta 
City Air Quality Index from November 1, 2021, to 
October 31, 2023, to answer the first objective of this 
research, and it also presents a scatter plot matrix of 
several variables used in predicting the air quality 
index. Figure 3 is a heatmap diagram that shows the 
level of air pollution based on the Air Quality Index. 
The diagram divides air pollution levels into six levels, 
as shown in Table 1. 

 
Table 1. Air Pollution Levels Based on the Air 

Quality Index 
Air Quality 

Index  

(µm/m3) 

Air Pollution Level 

Color 

0 – 50  Good Green 

51 – 100  Moderate Yellow 

100 – 150  Unhealthy for Sensitive 

Groups 

Orange 

151 – 200  Unhealty Red 

201 – 300  Very Unhealty Purple 

300+ Hazardous Maroon 

Source : The World Air Quality Project (https://aqicn.org) 
 

 

 
Figure 3. Air Pollution Levels based on the Central 

Jakarta City Air Quality Index 
 
The worst air pollution levels occurred in the last 5 
months (June–October) in 2023, where the average air 
pollution level was categorized as "unhealthy for 
sensitive groups" to "unhealthy" in that time period. 
Meanwhile, for the previous period, the average level 
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of air pollution was at the "moderate" level. In 
general, air pollution conditions in Central Jakarta 
City are rarely at the "good" level. 

 

 
Figure 4. Correlation between variables used in 

research 
 
The relationship between the Air Quality Index 
variable (PM25) and the duration of sunlight (ss) is 
positive, with a Pearson correlation value of 0.23. 
This value indicates a weak relationship between the 
two variables. Then, minimum air temperature (Tn) 
has a positive relationship with the air quality index 
(PM25) with a Pearson correlation value of 0.35. 
Judging from the Pearson correlation value, the 
relationship between the two variables tends to be 
weak. Maximum air temperature (Tx) has a positive 
relationship with the air quality index (PM25) with a 
Pearson correlation value of 0.24, which means there 
is a weak relationship between the two variables. 
Average air temperature (Tavg) also has a positive 
and weak relationship with the air quality index 
(PM25), namely the Pearson correlation value of 
0.34. Meanwhile, the average air humidity variable 
(RH_avg) has a negative and weak relationship with 
the air quality index variable (PM25) with a Pearson 
correlation value of -0.26. The maximum wind speed 
variable (ff_x) also has a weak and negative 
relationship with the air quality index variable 
(pm25), where the Pearson correlation value is -0.17. 
Not unlike the average wind speed variable (ff_avg), 
it also has a Pearson correlation value of -0.30, which 
can be interpreted as having a weak and negative 
relationship with the air quality index (pm25). 
 
A positive relationship can be interpreted as every 
increase in the duration of sunlight (ss), minimum air 
temperature (Tn), maximum air temperature (Tx), 
and average air temperature (Tavg), which will be 
followed by an increase in the air quality index 

(PM25). Meanwhile, a negative relationship can be 
interpreted as meaning that every increase in average 
air humidity (RH_avg), maximum wind speed (ff_x), 
and average wind speed (ff_avg) will be followed by a 
decrease in the air quality index (pm25). The results of 
the correlation exploration of each exogenous 
variable that will be used in forming the model show 
a weak relationship with the Air Quality Index 
variable. This occurs because the correlation analysis 
here is carried out partially for each variable. 
Meanwhile, the model formation is carried out 
simultaneously, so the simultaneous combination of 
exogenous variables is expected to help predict the 
Air Quality Index. 
 
To avoid spurious regression, in modeling using time 
series analysis, it is necessary to pay attention to 
whether the data is stationary. Data is stationary when 
it is around the mean and variance. In this research, to 
prove that the data is stationary or not, a formal test 
was carried out using the Augmented Dickey Fuller 
(ADF) test with α = 0.05. If the p-value > α ADF test 
conditions are met, then the null hypothesis cannot be 
rejected, and this means the data is not stationary. The 
ADF test results using R software can be seen in Table 
2. 
 
Table 2. Augmented Dickey Fuller (ADF) test results 

Variable 
Dickey-Fuller 

Statistics 
p-value 

Air Quality 

Index 
-5.4439 0.01 

minimum air 

temperature 
-5.6499 0.01 

maximum air 

temperature 
-5.7172 0.01 

average air 

temperature 
-5.4107 0.01 

long exposure 

to sunlight 
-5.6047 0.01 

average air 

humidity 
-6.3985 0.01 

maximum wind 

speed 
-6.9464 0.01 

average wind 

speed 
-7.4962 0.01 

Source: The World Air Quality Project and BMKG (2021-2023), data 
processed 
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Then this data is used as input for the modeling 
process to obtain the best model. After the data is 
stationary, the next process for selecting and 
optimizing ARIMA parameters is to observe the 
ACF/PACF graph and EACF matrix. Once this is 
achieved, the selected models are compared based on 
their AIC and BIC values. The best-fit model will be 
the one with the lowest AIC and BIC values. The 
auto.arima () function available in R software is used 
in this research, this function carries out the checking 
process steps as explained previously. When the 
function produces a result, the residuals of the 
resulting model are checked. If it resembles white 
noise, the forecast can then be calculated with 
optimal values for the parameters p, d, and q. 

 

 
Figure 5. ACF and PACF plots for Air Quality Index 

data 
 
As a starting point, we chose to generate a model 
using the auto.arima() function. The models returned 
by auto.arima() have the values p = 2, d = 1, and q = 
2, respectively. To verify whether these models are the 
best fit or not, we apply the manual ARIMA function 
by trying various possible parameters for p, d, and q 
following the steps described previously. 

 
Table 3. Performance Comparison of Tentative ARIMA Models 

Model AIC BIC Parameter Significance 

Auto ARIMA(2,1,2) 6369.046 6396.596 AR(2) is not significant 

ARIMA(1,0,0) 6434.344 6448.123 Significant 

ARIMA(1,0,1) 6413.188 6431.561 Significant 

ARIMA(2,0,1) 6378.125 6401.09 Significant 

ARIMA(2,0,2) 6379.406 6406.965 MA(2) is not significant 

ARIMA(1,1,1) 6366.212 6379.987 Significant 

ARIMA(2,1,1) 6367.532 6385.899 AR(2) is not significant 

ARIMA(1,1,2) 6367.419 6385.786 MA(2) is not significant 
Source: The World Air Quality Project and BMKG (2021-2023), data processed 
 

The ARIMA model obtained from the auto.arima () 
function is not necessarily the best result, this can be 
seen in Table 3. Although the AIC and BIC values 
are relatively small compared to the others, the AR 
(2) parameter is not significant in the ARIMA (2,1,2). 
As a comparison, it was found from manual 
experiments that the parameters ARIMA (1,1,1) 
produced AIC and BIC values that were even smaller 
than ARIMA (2,1,2) with all significant parameters in 
the model. Therefore, after comparing the 
measurement results, we conclude that the ARIMA 
(1,1,1) model is the most suitable model for the Air 
Quality Index data. The ARIMA (1,1,1) air quality 
index forecasting model obtained from R software is 
written as follows. 

𝑌𝑡  =  𝑐 +  0,533508𝑌𝑡−1 − 0,955229𝜀𝑡−1 +  𝜀𝑡 
 
where Yt is the air quality index in period t, Yt-1 is the 
air quality index in 1 period before t, ε_(t-1) is the 
error in 1 period before t and ε_t is the error in period 
t. 
 
As a comparison, modeling is carried out using 
ARIMAX, where exogenous variables will be added 
that have been proven to influence the Air Quality 
Index in previous research. The exogenous variables 
used in this research are meteorological variables in 
the form of minimum air temperature (Tn), maximum 
air temperature (Tx), average air temperature (Tavg), 
average air humidity (RH_avg), duration of sunlight 
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(ss), maximum wind speed (ff_x), and average wind 
speed (ff_avg). It is known that for some 
meteorological variables, there are several types of 
measurements, such as minimum, maximum, and 
average. So, this research will be carried out through 
trial and error for each possible model. On software 
R, there is a function ols_step_best_subset(), which 
is also used in this research to find the best 

combination of exogenous variables to include in the 
model. The ARIMA parameters used are the same as 
the best results in previous modeling, namely p = 1, d 
= 1, and q = 1. The results of testing the 
ARIMAX(1,1,1) model for each subset of tentative 
exogenous variables are presented in the following 
table. 

 
 

Table 4. Tentative model selection ARIMAX (1,1,1) 

Exogenous Variables AIC BIC 
Parameter Significance (𝛼 =

0,05) 

Tavg, Tn, RH_avg, ff_avg 6313.181 6345.323 Tn is not significant 

Tavg, ss, RH_avg, ff_avg 6310.952 6343.094 ss is not significant 

Tx, ss, RH_avg, ff_avg 6350.415 6382.557 Tx and ss 

Tn, ss, RH_avg, ff_avg 6342.723 6374.864 not significant 

Tavg, ss, RH_avg, ff_x 6320.024 6352.166 significant 

Tx, ss, RH_avg, ff_x 6359.365 6359.365 ss and ff_x 

Tn, ss, RH_avg, ff_x 6350.893 6383.034 not significant 

Tavg, RH_avg, ff_avg 6311.822 6339.372 Tx, ss and ff_x 

Tx, RH_avg, ff_avg 6349.936 6377.486 not significant 

Ss, RH_avg, ff_avg 6350.8 6378.35 ss and ff_x 

RH_avg dan ff_avg 6351.037 6373.995 not significant 

Tavg, ss, RH_avg 6318.208 6345.758 significant 

Tavg, RH_avg, ff_x 6320.448 6347.998 Tx is not significant 

Tavg dan RH_avg 6318.502 6341.46 ss is not significant 

ss, RH_avg, ff_x 6359.336 6386.886 significant 

RH_avg dan ff_x 6359.232 6382.19 ss is not significant 

Ss dan RH_avg 6357.427 6380.385 ff_x is not significant 

Tx, RH_avg, ff_x 6358.689 6386.239 significant 

Tx dan RH_avg 6356.818 6379.777 ss and ff_x 

Tx, ss, RH_avg 6357.592 6385.142 not significant 

RH_avg 6357.249 6375.616 ff_x  

Tn, RH_avg, ff_x 6352.5 6380.05 not significant 

Tn, ss, RH_avg 6348.973 6376.523 ss 

Tn, RH_avg 6350.503 6373.461 not significant 
Source: The World Air Quality Project and BMKG (2021-2023), data processed 

 
The exogenous variable subset obtained from the 
ols_step_best_subset() function is not necessarily the 
best result in model building, this can be seen in 
Table 5, although the AIC and BIC values are 
relatively small compared to the others, the Tn 
variable is not significant. For comparison, it was 
found from manual experiments that the subset of 

variables Tavg, RH_avg, ff_avg produced AIC and 
BIC values in the ARIMAX(1,1,1) model which were 
even smaller than the previous subset of exogenous 
variables with all significant variables in the model. 
Therefore, after comparing the measurement results, 
we conclude that the ARIMAX(1,1,1) model with 
exogenous variables average temperature (Tavg), 
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average humidity (RH_avg), and average wind speed 
(ff_avg) is a model with a subset of exogenous 
variables that best fits the Air Quality Index data and 
its supporting variables. The ARIMAX (1,1,1) air 
quality index forecasting model obtained from R 
software is written as follows. 
 

𝑌𝑡  =  8,8 𝑇𝑎𝑣𝑔𝑡
+ 1,503 𝑅𝐻𝑎𝑣𝑔𝑡

− 3,072𝑓𝑓𝑎𝑣𝑔𝑡

+  0,532 𝑌𝑡−1 − 0,953𝜀𝑡−1 +  𝜀𝑡 
 

where 𝑌𝑡 is the observation value in period t, 𝑇𝑎𝑣𝑔𝑡
 is 

the average air temperature in period t, 𝑅𝐻𝑎𝑣𝑔𝑡
 is the 

average air humidity in period t, 𝑓𝑓𝑎𝑣𝑔𝑡
 is the average 

wind speed in period t, 𝑌𝑡−1 is the observation value 

in 1 period before t, 𝜀𝑡−1 is the error in 1 period 

before t and 𝜀𝑡 is the error in period t. 
 
To test the normality of errors in the ARIMAX(1,1,1) 
model, the Shapiro-Wilk test and Q-Q plot 
visualization were carried out using R software. 
Residual pattern testing in this study also used R 
software, which was seen from the residual plot and 
supported by the t test using the hypothesis that zero 
on average is 0. Then, to test whether the residuals 
are correlated, the Ljung-Box test is carried out and 
also observed from the ACF/PACF plot using R 
software. In addition, it is necessary to confirm 
whether data volatility needs to be modeled using the 
Breusch-Pagan Test on R software. A summary of 
the output is shown in the following figure and table. 

 

 
Figure 6. ARIMA (1,1,1) Diagnostic Test using Plot 

 

 
Figure 7. ARIMAX (1,1,1) Diagnostic Test using 

Plot 
 
Table 5. Diagnostic Test Results for ARIMA (1,1,1) 

and ARIMAX (1,1,1) models using Formal Tests 

Test Type 

p-value 

ARIMA 

(1,1,1) 

ARIMAX 

(1,1,1) 

Shapiro-Wilk 

Normality Test 
0.02815 0.105 

Box-Ljung Test 0.6427 0.657 

One Sample t-test 0.4032 0.3945 

ARCH LM-test 0.005323 0.005035 

 
Based on the Q-Q plot graphs in Figures 6 and 7, it 
can be seen that the residuals for the two distribution 
models do not follow the normal line, but in this 
visualization, it is not clear that normality is visible. 
error, so a formal test was carried out using the 
Shapiro-Wilk test. In the Shapiro Wilk test results, the 
ARIMA model (1,1,1) shows a p-value of 0.02815. 
Because the p-value is smaller than alpha 5 percent, 
the decision to reject H0 is given, where H0 indicates 
the error is normally distributed and H1 indicates the 
error is not normally distributed. Thus, it can be 
concluded that with a significance level of 5 percent, 
there is not enough evidence to state that the ARIMA 
(1,1,1) model error follows a normal distribution. In 
contrast to the ARIMAX(1,1,1) model, where the p-
value is greater than alpha 5 percent, it gives a decision 
to reject H0, which means that with a significance 
level of 5 percent, there is sufficient evidence to state 
that the ARIMAX(1,1,1) model error follows a 
normal distribution. From these results, it is known 
that, in terms of fulfilling the normal distribution 
assumption, ARIMAX (1,1,1) is considered better. 
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In the ACF and PACF plots, the observed values of 
the ARIMA (1,1,1) model do not appear to cross the 
significant line, or it can be said that the residuals are 
independent of each other. However, for the 
ARIMAX (1,1,1) model there is lag which exceeds 
the Bartlett line. This needs to be tested further with 
the results of the formal Ljung-Box test obtainedp-
value for the ARIMA (1,1,1) model of 0.6427 > α = 
0.05, then it fails to reject H0, where H0 indicates 
error not correlated and H1 showserror correlated. 
That is, there is not enough evidence to state that the 
remainder is intermediate lag mutually correlated, or 
it can be said that there is no autocorrelation between 
the residuals lag at a real level of 5%. Likewise with 
the ARIMAX (1,1,1) model, where the valuep-value 
is 0.657 greater than alpha 5 percent, then it gives a 
failed decision to reject H0, which means that with a 
significance level of 5 percent, there is not enough 
evidence to state that the ARIMAX (1,1,1) models 
are correlated with each other lag. 
 
The residual plots of ARIMA (1,1,1) and ARIMAX 
(1,1,1) show the same pattern the residuals are 
random and scattered around the zero value. This is 
also supported by the results of the one-sample t-test 
where values were obtained p-value for the ARIMA 
(1,1,1) model is 0.4032 > α = 0.05 and for the 
ARIMAX (1,1,1) model, the p-value = 0.3945 > α = 
0.05, then it fails to reject H0, where H0 shows the 
residual is around the value 0 and H1 vice versa. This 
means that there is sufficient evidence to state that 
the mean value of the residuals for both models is 
equal to zero at the 5% level of significance. 
 
Based on the test results using the Breusch-Pagan 
Test, a value was obtained p-value for the residual 
(error) of the ARIMA (1,1,1) model is 0.005323 and 
the ARIMAX (1,1,1) model is 0.005035. Because p-
value is smaller than 5 percent, it results in a decision 
to reject H0, where H0 shows a homogeneous 
residual variety and H1 shows an inhomogeneous 
residual variety. This means that with a significance 
level of 5 percent there is not enough evidence to say 

error for both homogeneous models. 
 

 
Figure 8. A comparative graph of ARIMA and 

ARIMAX Air Quality Index forecasting 
 

After obtaining the best model to predict the Air 
Quality Index, in this research, a forecast of the air 
quality index was carried out for November 2023. It 
can be seen that the forecasting results using the 
ARIMA (1,1,1) model provide forecasts that tend to 
be constant and do not follow the actual data pattern 
of the previous period. The situation is different from 
the results of forecasting using the ARIMAX (1,1,1) 
model with exogenous variables like average air 
temperature, average air humidity, and average wind 
speed, which provide forecasts that tend to follow the 
actual data pattern of the previous period. The 
forecast values for the Central Jakarta City Air Quality 
Index using the two models are presented in figures 9 
and table 6 below. 

 

 
Figure 9. Air Quality Index forecasting graph 

 
 

Table 6. AQI forecasting results for January 2024 

Tanggal ARIMA (1,1,1) ARIMAX (1,1,1) 

01/01/2024 126.39 126.98 

02/01/2024 126.39 128.27 

03/01/2024 126.39 122.04 

04/01/2024 126.39 120.96 
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05/01/2024 126.39 131.38 

06/01/2024 126.39 134.71 

07/01/2024 126.39 128.99 

08/01/2024 126.39 127.34 

09/01/2024 126.39 128.67 

10/01/2024 126.39 123.14 

11/01/2024 126.39 125.91 

12/01/2024 126.39 122.59 

13/01/2024 126.39 125.55 

14/01/2024 126.39 125.40 

15/01/2024 126.39 124.15 

16/01/2024 126.39 128.75 

17/01/2024 126.39 130.46 

18/01/2024 126.39 126.58 

19/01/2024 126.39 123.36 

20/01/2024 126.39 115.24 

21/01/2024 126.39 121.55 

22/01/2024 126.39 120.35 

23/01/2024 126.39 121.28 

24/01/2024 126.39 125.56 

25/01/2024 126.39 133.61 

26/01/2024 126.39 124.04 

27/01/2024 126.39 124.38 

28/01/2024 126.39 129.73 

29/01/2024 126.39 122.62 

30/01/2024 126.39 125.01 

31/01/2024 126.39 120.50 

 
Forecasting results using the best model, 
ARIMAX(1,1,1) show fluctuating data patterns 
according to past data patterns. A decrease or 
increase in AQI values can be caused by the influence 
of exogenous variables such as average air 
temperature, average air humidity, and average wind 
speed. For example, an increase in average air 
temperature and average wind speed can cause a 
decrease in AQI values because warmer air 
conditions and faster winds can help in the 
dispersion of air pollutants. Conversely, an increase 
in average air humidity can cause an increase in AQI 
values because high air humidity can worsen air 
quality by extending the residence time of pollutants 
in the air. This is in line with the correlation analysis 
in Figure 4 as well as previous research on the 
relationship between air quality and meteorological 
factors by reference [12]. Thus, adding exogenous 
variables to the ARIMAX (1,1,1) model can help 
predict changes in AQI values more accurately, 
because these variables can provide additional 

information about meteorological conditions that 
affect air quality. 
 
To determine the effectiveness of adding exogenous 
variables like average air temperature, average air 
humidity, and average wind speed to the ARIMA 
model, the values were calculated in the error model 
in the form of RMSE and MAPE for each model. The 
results of calculating the RMSE and MAPE values are 
presented in the following table. 

 
Table 7. Performance comparison of ARIMA (1,1,1) 

and ARIMAX (1,1,1) models 

Jenis ARIMA (1,1,1) 
ARIMAX 

(1,1,1) 

RMSE 18.94876 18.1804 

MAPE 21.04613 20.19012 

AIC 6366.212 6311.822 

BIC 6379.987 6339.372 
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The RMSE and MAPE values for the ARIMAX 
(1,1,1) model are relatively smaller compared to the 
RMSE and MAPE for the ARIMA (1,1,1) model. 
This means that the ARIMAX (1,1,1) model has 
better forecasting performance than the ARIMA 
(1,1,1) model. This is supported by the AIC and BIC 
values which also show smaller values for the 
ARIMAX (1,1,1) model than for the ARIMA (1,1,1) 
model. 
 
The results of this research have important 
implications in relation to the environment and 
public health. This research highlights the 
detrimental impacts of poor air quality, especially 
related to fine particulate PM2.5, which can cause 
serious respiratory and cardiovascular health 
illnesses. The implication of this research is the 
importance of understanding the relationship 
between meteorological factors and air quality to take 
appropriate mitigation measures. By considering 
factors such as air temperature, air humidity, and 
wind speed in predicting the air quality index (AQI), 
this research shows that the use of the ARIMAX 
model can increase the accuracy of AQI predictions. 
This can help governments and public health 
authorities adopt more effective policies to protect 
public health from the impacts of adverse air quality. 
 
In addition, this research also highlights the 
importance of accurate meteorological monitoring in 
predicting air quality. By understanding the 
relationship between meteorological factors and air 
pollution, governments and related agencies can 
develop more effective strategies for managing air 
quality and protecting public health. Overall, this 
research makes an important contribution to 
understanding the relationship between air quality, 
meteorological factors, and public health. The 
implications of this research can help in the 
development of more effective environmental and 
public health policies to protect society from the 
impacts of adverse air quality. 
 
 

4. Conclusions 
 
In recent decades, there has been an issue with poor 
air quality. Respiratory conditions like cardiovascular 
disease can be brought on by poor air quality. One 
indicator that can be used to gauge the quality of the 

air in a given location is the Air Quality Index (AQI). 
One of the pollutants used to calculate the Air Quality 
Index (AQI) is fine particulate matter (PM2.5). Any 
airborne particle less than 2.5 micrometers in diameter 
is referred to as fine particulate matter, or PM2.5. 
Data from the Historical Air Quality Data Platform 
(The World Air Quality Project) and the BMKG 
Online Database Center were utilized in this study. 
The daily individual AQI PM2.5 data (µm/m3), 
minimum and maximum air temperatures (°C), 
average and minimum air temperatures (°C), average 
air humidity (percent), hours of sunlight, and average 
and maximum wind speeds (m/s) were obtained. 
There were missing values discovered during the 
preparation of the data. Using a k value of 5, we 
applied the k-NN approach to fill in the missing 
values in order to overcome them. 
 
With exogenous factors including average air 
temperature, average air humidity, and average wind 
speed, this study generates ARIMA (1, 1, 1) and 
ARIMAX (1, 1, 1) models to predict the air quality 
index. In contrast Based on RMSE, MAPE, AIC, and 
BIC values, one may compare the accuracy of the 
ARIMA (1,1,1) model with the ARIMAX (1,1,1) 
model. The RMSE value in the ARIMAX (1,1,1) 
model comes out to be 18.1804. where the RMSE 
value is 18.94876 and the MAPE value is 21.04613 in 
the ARIMA (1,1,1) model, and the MAPE value is 
20.19012 in that model. Based on these findings, the 
ARIMAX (1, 1, 1) model outperforms the ARIMA (1, 
1, 1) model in terms of forecasting. This is supported 
by the AIC (6311.822) and BIC (6339.372) values in 
the ARIMAX (1,1,1) model, which are smaller than 
the AIC (6366.212) and BIC (6379.987) in the 
ARIMA (1,1,1) model. 
 
The findings of the best model's forecasting, 
ARIMAX (1, 1, 1), reveal varying data patterns based 
on historical data patterns. The AQI number can be 
impacted by exogenous factors such wind speed, air 
temperature, and air humidity. Air quality index (AQI) 
can be increased or decreased depending on the 
temperature and wind speed. By include more details 
about the climatic factors that impact air quality, these 
variables can increase the accuracy of AQI forecasts 
made using the ARIMAX (1, 1, 1) model. This study's 
shortcomings include the fact that it only used data 
from Central Jakarta City, making it unable to forecast 
the air quality index over a larger region. Additionally, 
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only missing value detection and handling are done 
in this study; outlier data are not taken into account. 
The ARIMAX model may be impacted by outlier 
data in a number of ways, including altered 
autocorrelation and partial autocorrelation patterns, 
altered model parameter values, and elevated 
forecasting error values. 
 
Subsequent studies might employ other techniques 
to complement the ARIMAX forecasting model with 
alternative forecasting models that might be more 
accurate and appropriate for air quality index 
forecasting. To create a more accurate forecasting 
model, it is also essential to pay attention to the data 
utilized to identify and eliminate missing values and 
outliers. It is anticipated that future studies would 
take into account additional exogenous variables in 
order to improve the accuracy of PM2.5 
concentration forecasts. In order to produce better 
data that can aid in the prediction of air quality 
indices, it is desired that BMKG can concentrate on 
enhancing the precision and accuracy of 
meteorological monitoring. The way the government 
carries out its plans to control the quality of the air in 
Central Jakarta needs to be improved. Starting with 
the implementation of meteorologically responsive 
air management policies—such as restricting 
transportation or industrial activity when conditions 
have the potential to deteriorate air quality—this can 
be accomplished. 
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