

Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)

Journal Homepage: http://journal.lembagakita.org/index.php/jtik

Optimasi Penerapan Algoritma Yolo dan Data Augmentasi dalam Klasifikasi Pakaian Tradisional Kebaya

Dadang Iskandar Mulyana ¹, Sahroni ^{2*}

^{1,2}° Program Studi Teknik Informatika, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, Kota Jakarta Timur, Daerah Khusus Ibu kota Jakarta, Indonesia.

article info

Article history:
Received 30 July 2023
Received in revised form
22 November 2023
Accepted 3 December 2023
Available online January 2024

DOI: https://doi.org/10.35870/jti k.v8i1.1446.

Keywords: Kebaya; Clothing; YOLO.

Kata Kunci: Kebaya; Pakaian; YOLO.

abstract

Kebaya is one of Indonesia's traditional clothes which has a long history and is rich in culture. Each region or tribe in Indonesia has a kebaya with its own characteristics, including unique patterns, colors and decorations Indonesian society want to know the kebaya from their area of origin but have difficulty distinguishing the kebayas because there are only slight differences in certain parts of the kebaya which are characteristic of kebaya from one area with kebaya from other regions. Therefore we need a system that can detect or classify traditional kebaya clothes in Indonesia. Researchers use the YOLOv8 version in making this system. The YOLOv8 algorithm goes through a classification system for kebaya clothes, processes such as annotation, preprocessing, augmentation, training to testing. The research results show good results with a confidence value of 90% - 97%. The final results of testing on 12 images show the output by knowing the kebaya class and good accuracy and producing an average accuracy value of 94%.

abstrak

Kebaya adalah salah satu pakaian tradisional Indonesia yang memiliki sejarah panjang dan kaya akan budaya. Setiap daerah atau suku di Indonesia memiliki kebaya dengan ciri khasnya sendiri, termasuk pola, warna, dan hiasan yang unik. Sebagian besar masyarakat indonesia ingin mengetahui kebaya dari daerah asalnya namun kesulitan untuk membedakan kebaya-kebaya tersebut dikarenakan hanya sedikit perbedaan di bagianbagian tertentu pada kebaya yang menjadi ciri khas kebaya dari satu daerah dengan kebaya dari daerah lainnya. Maka dari itu dibutuhkan sebuah sistem yang dapat mendeteksi atau mengklasifikasikan pakaian tradisional kebaya di indonesia. Peneliti menggunakan YOLO versi 8 dalam pembuatan sistem ini. Algoritma YOLOv8 dalam sistem klasifikasi pakaian kebaya melewati proses-proses seperti anotasi, preprocessing, augmentasi, training hingga testing. Pada hasil penelitian menujukan hasil yang baik dengan nilai confidence 90% - 97%. Hasil akhir pengujian pada 12 citra kebaya menunjukan output engan mengenal kelas kebaya dan akurasi yang baik dan menghasilkan nilai rata-rata akurasi sebesar 94%.

^{*}Corresponding Author. Email: sahterusroni@gmail.com 2*.

1. Latar Belakang

Kebaya adalah pakaian tradisional Indonesia yang menjadi salah satu identitas pakaian tradisional yang akan selalu terasa istimewa saat dikenakan oleh wanita. Kebaya berasal dari Tiongkok pada tahun 1300-1600 sebelum masehi bentuk pakaian kebaya masih berupa baju tunik yang umumnya digunakan oleh wanita Tionghoa di pemerintahan Dinasti Ming. Pada tahun 1500-1600 masehi, wanita imigran Tionghoa mulai masuk ke Indonesia dan model baju kebaya berkembang menjadi kebaya encim. Lalu persebaran kebaya tertuju ke daerah Jawa, Bali, Sumatera, hingga Sulawesi setelah mengalami budava akulturasi ratusan selama tahun[1]. Persebarannya dianggap sebagai pakaian khusus yang hanva untuk dikenakan oleh keluarga kerajaan, bangsawan, dan priyayi. Pada abad ke-19, kebaya menjadi pakaian sehari-hari bagi semua kelas sosial. Baik perempuan Jawa maupun peranakan Belanda. Bahkan, kebaya sempat menjadi pakaian wajib perempuan Belanda yang berdatangan ke Hindia Belanda [1]. Di era globalisasi ini terjadi proses modernisasi pada kebaya, agar dapat dipakai dengan mudah dan mengikuti perkembangan zaman. Meskipun terjadi proses modernisasi terhadap kebaya, terdapat aturan atau pakem yang tidak bisa dihilangkan. Menurut Didiet Maulana, kebaya murni Indonesia yang sesuai pakem dan kaidah busana adalah pakaian yang simetris bagian kanan dan kirinya [2]. Panjang tangan dan panjang kebayanya harus simetris antara kiri dan kanannya, sehingga tampilannya terlihat rapi.

Kebaya adalah salah satu pakaian tradisional Indonesia yang memiliki sejarah panjang dan kaya akan budaya. Pakaian ini terdiri dari blus longgar yang panjang, biasanya dengan lengan panjang dan leher tinggi. Kebaya sering dipadukan dengan sarung atau rok, dan sering dihiasi dengan berbagai motif dan hiasan yang indah [2]. Sebagai pakaian tradisional yang tersebar di berbagai daerah di Indonesia, kebaya memiliki variasi jenis dan gaya yang berbeda-beda. Setiap daerah atau suku di Indonesia memiliki kebaya dengan ciri khasnya sendiri, termasuk pola, warna, dan hiasan yang unik[3]. Beberapa jenis kebaya yang terkenal di Indonesia antara lain kebaya Jawa, kebaya Bali, kebaya Palembang, dan banyak lagi. Sebagian besar masyarakat indonesia ingin mengetahui kebaya dari daerah asalnya namun kesulitan untuk

membedakan kebaya-kebaya tersebut dikarenakan hanya sedikit perbedaan di bagian-bagian tertentu pada kebaya yang menjadi ciri khas kebaya dari satu daerah dengan kebaya dari daerah lainnya. Maka dari itu dibutuhkan sebuah sistem yang dapat mendeteksi atau mengklasifikasikan pakaian tradisional kebaya di indonesia.

Pada permasalahan diatas, peneliti mengidentifikasi masalah yaitu sebagian besar masyarkat Indonesia kesulitan untuk membedakan kebaya dikarenakan hanya sedikit perbedaan di bagian-bagian tertentu kebaya. Maka peneliti merumuskan permasalahannya adalah bagaimana membuat sebuah sistem yang dapat mengidentifikasi dan memberikan informasi terhadap pakaian tradisional kebaya dengan akurat?. Penelitian ini bertujuan mengoptimalkan kinerja algoritma deteksi objek YOLO dalam klasifikasi pakaian tradisional kebaya menggunakan metode data augmentasi. YOLO (You Only Look Once) adalah algoritma yang mendeteksi dan mengenali berbagai objek dalam gambar (secara real-time) [4]. Deteksi objek di YOLO dilakukan sebagai masalah regresi dan memberikan probabilitas kelas dari yang terdeteksi. Algoritma YOLO menggunakan convolutional neural network (CNN) untuk mendeteksi objek secara real-time. Seperti namanya, algoritma ini hanya membutuhkan satu propagasi maju melalui jaringan saraf untuk mendeteksi objek.

Berbagai penelitian terdahulu telah mengembangkan penerapan algoritma deteksi objek, khususnya YOLO (You Only Look Once), salah satunya adalah studi yang dilakukan oleh Zuanita Syifaul Jannah dan Felix Andreas Sutanto (2022), digunakan versi 4 Tiny (YOLOv4-Tiny) untuk mendeteksi jenis rias adat Nusantara pada gambar bagian kepala mempelai pengantin wanita. Melalui proses pelatihan dataset pada 1478 citra yang mencakup 14 jenis rias adat, aplikasi yang dikembangkan berhasil mencapai tingkat akurasi yang tinggi, sebesar 95.20%, dengan waktu deteksi rata-rata sekitar 327ms [5]. Selanjutnya, penelitian Primasdika Yunia Putra, Aji Seto Arifianto, Zilvanhisna Emka Fitri, dan Trismayanti Dwi Puspitasari (2023) mendeteksi kendaraan truk pada video menggunakan metode Tiny-YOLO V4, Data dari Badan Kebijakan Transportasi Kementerian Perhubungan menunjukkan adanya 92 laporan investigasi kecelakaan yang melibatkan kendaraan

angkutan barang/truk dari tahun 2007 hingga 2019, sehingga penelitian ini memiliki signifikansi yang jelas dalam upaya pencegahan kecelakaan lalu lintas [6]. Penelitian Mochamad Sarosa dan Nailul Muna (2019) menggarisbawahi penerapan teknologi dalam bidang kemanusiaan. Dengan menggunakan algoritma YOLOv3 dan YOLOv3 Tiny, penelitian ini berhasil mencapai F1 Score sebesar 95.3% dalam mendeteksi korban bencana alam, memberikan kontribusi penting dalam upaya pencarian dan penyelamatan korban bencana dengan cepat dan efektif [7]. Sementara itu, penelitian Oktaviani Ella Karlina dan Dina Indarti (2019) menunjukkan aplikasi YOLO dalam industri makanan. Dengan akurasi pengenalan objek makanan cepat saji antara 63% hingga 100%, penelitian ini menyoroti potensi teknologi deteksi objek dalam meningkatkan efisiensi dalam proses pengenalan dan pengelolaan inventarisasi di industri makanan [8]. Penelitian oleh Adam Fahmi Fandisyah, Nur Iriawan, dan Wiwiek Setya Winahju (2021) menggambarkan signifikansi YOLO dalam bidang keamanan maritim. Dengan mencapai nilai mAP sebesar 95.06% pada data training dan 50.41% pada data testing, penelitian ini menyoroti potensi YOLO mendukung upaya pengawasan pemantauan kapal di perairan Indonesia [9]. Secara keseluruhan, rangkaian penelitian yang telah dibahas pentingnya menegaskan pengembangan penerapan algoritma deteksi objek seperti YOLO. Dari deteksi rias adat Nusantara hingga pengenalan objek makanan cepat saji, dari keselamatan lalu lintas hingga pencarian korban bencana alam, dan dari pemantauan kapal di laut hingga aplikasi dalam makanan, penelitian-penelitian industri membuktikan kemampuan teknologi deteksi objek dalam meningkatkan efisiensi, keamanan, dan pengetahuan di berbagai bidang. Dengan terus berkembangnya teknologi dan penelitian lebih lanjut, diharapkan bahwa aplikasi-alikasi tersebut dapat terus ditingkatkan untuk memberikan manfaat yang lebih besar lagi bagi masyarakat secara keseluruhan.

2. Metode Penelitian

Bahan Penelitian

Peneliti menggunakan dataset *public* dengan bantuan mesin pencari google images dalam menemukan citra kebaya. Dataset berjumlah 770 citra digital dengan masing-masing kebaya beserta membaginya kedalam

data train sebanyak 638 gambar, data valid sebanyak 108 gambar dan data test sebanyak 24 gambar. Dalam pembuatan dataset peneliti menjalankan proses - proses seperti anotasi, split dataset, preprocessing, augmentasi dan generate dataset dengan menggunakan roboflow. Terdapat 6 kelas pakaian tradisional kebaya dalam penelitian ini yaitu: kebaya bali, kebaya encim, kebaya kutu baru, kebaya labuh, kebaya rancongan, dan kebaya tasik. Berikut gambar kelas-kelas pakaian tradisional kebaya.

Gambar 1. Bali (Kiri) dan Encim (Kanan)

Gambar 2. Kutu Baru (Kiri) dan Labuh (Kanan)

Gambar 3. Rancongan dan Tasik

Rancangan Pengujian

Dalam penelitian ini menggunakan algoritma YOLO dalam mengklasifikasikan kebaya. Pada penelitian ini, peneliti menggunakan beragam software yaitu

roboflow, google colaburatory, dan pycharm. Langkah – langkah penelitian oleh peneliti adalah sebagai berikut:

Gambar 4. Langkah-Langkah Penelitian

1) Masukan Dataset

Masukan Dataset merupakan langkah awal untuk memasukkan kumpulan jenis gambar pakaian kebaya yang diupload di google colab. Untuk pendeteksian objek yang stabil dan dan keakuratan yang tinggi tahapan ini sangat penting.

2) Training Dataset

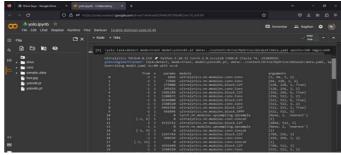
Training Dataset merupakan tahapan melatih dataset untuk membuat suatu prediksi sehingga dapat digunakan untuk mendeteksi objek pada suatu gambar. Training dataset dilakukan menggunakan algoritma YOLO lalu data training diambil menggunakan Google Colab.

3) Validation Dataset

Validation Dataset merupakan salah satu bagian dari dataset yang digunakan memberikan umpan balik atau feedback dari analisa yang dilakukan yakni tahapan training dataset.

4) Masukan Gambar yang Ingin Dideteksi

Masukan gambar yang ingin dideteksi merupakan tahapan untuk menguji gambar yang telah melewati tahapan training. Gambar yang digunakan dalam tahap ini ialah gambar jenisjenis gambar pakaian tradisional pada gambar pakaian tradisional kebaya.


5) Hasil Deteksi

Hasil Deteksi adalah tahapan terakhir yaitu sebuah hasil gambar yang sudah diuji penedeteksian objek dengan algoritma YOLO. Pada hasil sebuah gambar terdapat label nama jenis pakaian tradisional kebaya dan objek pakaian terdapat bounding box.

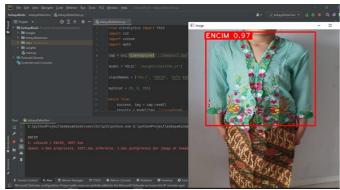
3. Hasil dan Pembahasan

Training Dataset

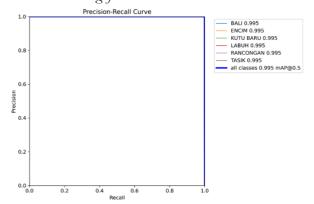

Setelah pembuatan dataset di roboflow, tahap selanjutnya adalah training dataset. Citra pakaian kebaya di training dengan bantuan Google Colaburatory. Training merupakan proses model dalam mencari dan mempelajari good values (nilai yang memiliki error paling rendah) untuk setiap weight dan bias dari labeled data train[10]. Pada tahap ini, peneliti menggunakan library python yang bernama *ultralytics* dan mengimpor algoritma YOLOv8 dari library *ultalytics* tersebut.

Gambar 5. Training Dataset

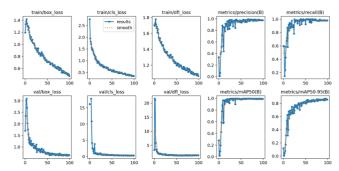
Validating Dataset


Tahapan selanjutnya adalah memvalidasi dataset. Tahapan berguna untuk memastikan bahwa program yang dibuat dapat memprediksi dengan akurasi yang baik pada citra.

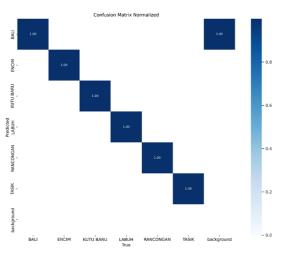
Gambar 6. Validating Dataset


Pengujian Program

Dalam tahap ini peneliti menggunakan software pycharm dalam membuat dan menguji program klasifikasi kebaya. Setelah mendapatkan model dataset di tahap-tahap sebelumnya maka dataset akan masuk ke tahap pengujian. Pada tahap pengujian ini melewati proses-proses seperti mendefinisikan model, mendefinisikan kelas kebaya, membuat warna dasar bounding box, mengatur bounding box, mendefinisikan nilai confidence / persentase, dan mengatur warna bounding box dari setiap kelas. Setelah itu salah satu citra pakaian kebaya diuji seberapa besar akurasinya. Berikut adalah contoh hasil output pada program.


Gambar 7. Output pada Program

Hasil Akhir Pengujian



Gambar 8. Kurva Precision terhadap Recall

Pada gambar diatas menunjukan hasil training pada program pakaian tradisional kebaya mendapatkan nilai yang cukup tinggi pada nilai precision mendapatkan rata-rata nilai 0.995 terhadap nilai recall.

Gambar 9. Hasil Evaluasi Data Training

Gambar 10. Confusion Matrix

Dari 12 citra yang diuji pada tahap pengujian ini, menghasilkan rata-rata akurasi dari setiap citra yaitu 94%. Berikut tabel hasil dari tahap pengujian ini.

Tabel 1. Hasil Pengujian

No	Nama Gambar	Kelas Kebaya	Nilai Akurasi (%)
1	1.jpg	ENCIM	97%
2	2.jpg	KUTU BARU	93%
3	3.jpg	LABUH	92%
4	4.jpg	RANCONGAN	91%
5	5.jpg	BALI	90%
6	6.jpg	TASIK	97%
7	11.jpg	ENCIM	97%
8	12.jpg	KUTU BARU	95%
9	13.jpg	LABUH	93%
10	14.jpg	RANCONGAN	94%

11	15.jpg	BALI	93%
12	16.jpg	TASIK	96%
Rata	ı-rata akura	94%	

4. Kesimpulan

Hasil penelitian pada program klasifikasi pakaian tradisional kebaya menunjukan Algoritma YOLOv8 dalam program klasifikasi pakaian kebaya melewati proses-proses seperti anotasi, preprocessing, augmentasi, training hingga testing. Pada hasil penelitian menujukan hasil yang baik dengan nilai confidence 90% - 97% dan hasil akhir pengujian pada 12 citra menunjukan output dengan mengenal kelas kebaya dan akurasi yang baik dan menghasilkan nilai rata-rata akurasi sebsesar 94%. Dari hasil tersebut menunujukan pengklasifikasian algoritma YOLOv8 yang dilakukan peneliti cukup baik.

5. Daftar Pustaka

- [1] Fitria, F. and Wahyuningsih, N., 2019. Kebaya kontemporer sebagai pengikat antara tradisi dan gaya hidup masa kini. *ATRAT: Jurnal Seni Rupa*, 7(2), pp.128-138.
- [2] Luthfiah, V., 2019. Perancangan Interior Pusat Kebaya Nusantara Di Bandung (Tugas Akhir, Universitas Komputer Indonesia). Universitas Komputer Indonesia.
- [3] Nagata, T. and Sunarya, Y.Y., 2023. Perkembangan kebaya kontemporer sebagai transformasi budaya. *Jurnal Seni dan Reka Rancang: Jurnal Ilmiah Magister Desain*, 5(2), pp.239-254. DOI: https://doi.org/10.25105/jsrr.v5i2.16502.
- [4] Ghozali, M.S. and Mustafa, M.B., 2019. Pembuatan pendeteksi obyek dengan metode you only look once (YOLO) untuk automated teller machine (ATM). *Majalah Ilmiah UNIKOM*, *17*(1), pp.69-76. DOI: https://doi.org/10.34010/miu.v17i1.2240.

- [5] Jannah, Z.S. and Sutanto, F.A., 2022. Implementasi Algoritma YOLO (You Only Look Once) Untuk Deteksi Rias Adat Nusantara. *Jurnal Ilmiah Universitas Batanghari Jambi*, 22(3), pp.1490-1495. DOI: http://dx.doi.org/10.33087/jiubj.v22i3.2421.
- [6] Putra, P.Y., Arifianto, A.S., Fitri, Z.E. and Puspitasari, T.D., 2023. Deteksi Kendaraan Truk pada Video Menggunakan Metode Tiny-YOLO v4. *Jurnal Informatika Polinema*, 9(2), pp.215-222. DOI: https://doi.org/10.33795/jip.v9i2.1243.
- [7] Sarosa, M. and Muna, N., 2021. Implementasi algoritma you only look once (YOLO) untuk deteksi korban bencana alam. *Jurnal Teknologi Informasi dan Ilmu Komputer*, 8(4), pp.787-792. DOI: https://doi.org/10.25126/jtiik.2021844407.
- [8] Karlina, O.E. and Indarti, D., 2020. Pengenalan objek makanan cepat saji pada video dan real time webcam menggunakan metode you look only once (yolo). *Jurnal Ilmiah Informatika Komputer*, 24(3), pp.199-208. DOI: http://dx.doi.org/10.35760/ik.2019.v24i3.236 2.
- [9] Fandisyah, A.F., Iriawan, N. and Winahju, W.S., 2021. Deteksi kapal di laut indonesia menggunakan yolov3. *Jurnal Sains dan Seni ITS*, 10(1), pp.D25-D32. DOI: http://dx.doi.org/10.12962/j23373520.v10i1.5 9312.
- [10] Fadillah, R.Z., Irawan, A., Susanty, M. and Artikel, I., 2021. Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO). *Jurnal Informatika*, 8(2), pp.208-214.