Advancing Geothermal Resource Assessment Using 3D Gravity Modeling: A Case Study from Kamojang, West Java
DOI:
https://doi.org/10.35870/ljit.v3i1.4044Keywords:
Geothermal, Gravity method, 3D modelling, Kamojang, GeophysicAbstract
The research was conducted using the gravity method in the Kamojang geothermal manifestation area, West Java. Data was obtained through the Topex website which contains information on latitude, longitude, elevation, and FAA value. The purpose of this research is to determine the density value of subsurface constituent rocks to determine the location of reservoirs and heat sources in the research area. The corrections made are Bouger correction and Terrain correction obtained from the CBA map which is sliced as many as 5 incisions. Calculation of subsurface average mass density using the Parasnis method obtained a density of 2.5882 mGal. Spectrum analysis was performed to determine the regional-residual depth using the moving average method. The regional anomaly contour map shows a range of 15 - 135 mGal. The residual anomaly contour map shows a range of -26 to +28 mGal with more complex results. Modeling results using Grav3D with a mesh value of 500 show a density range of 1.6752 - 3.1712 gr/cm³ with an altitude of 600 - 2000 m and a thickness of 1400 m. Zones with high density values between 2.9219 - 3.1712 gr/cm³ are indicated as heat source areas with volcanic rocks such as lava to basalt igneous rocks. Medium density values in the range of 2.4232 - 2.6722 gr/cm³ are indicated as boundary zones which are interpreted as basement in the caprock of the study area with igneous rocks surrounding the boundary zone. The low density zone with a value of 1.6752 - 2.1732 gr/cm³ is indicated as a reservoir zone with sedimentary rocks composed of pyroclastic rocks and breccias.
Downloads
References
Al Hakim, C., Fauzi, A., & Ekayani, M. (2014). Pemilihan Alternatif Kebijakan Pengelolaan Sumberdaya Energi Panas Bumi di Kamojang, Jawa Barat Dengan Analisis Multi Criteria Decesion Making (Mcdm). Journal of Agriculture, Resource, and Environmental Economics, 26-43.
Alsadi, H.N. dan Baban, E.N. (2014). Introduction To Gravity Exploration Method. Iraq: University Of Sulaimani.
Banu, B., Zaenudin, A., & Rustadi. (2013). Pemodelan 3d Gayaberat Dan Analisis Struktur Detail Untuk Pengembangan Lapangan Panasbumi Kamojang. Jurnal Geofisika Eksplorasi Vol.1, 34-42.
Basid, A., Andrini, N., & Arfiyaningsih. (2014). Pendugaan Reservoir Sistem Panas Bumi Dengan Menggunakan Survey Geolistrik, Resistivitas dan Self Potensial (Studi Kasus: Daerah Manifestasi Panas Bumi di Desa Lombang, Kecamatan Batang-Batang Sumenep). Jurnal Neutrino, 7(1), 57-70.
Gaol, K.L., Permana, H., Sudrajat, Y., & Wardana, D. (2006). Citra Geologi Bawah Permukaan Lajur Meratus Berdasarkan Data Geofisika. Prosiding Seminar Geoteknologi, 355-370.
Habibirahman, S.A., Lestari., & Kustono, B. (2019). Perhitungan Potensi Cadangan Panasbumi Lapangan “X” Menggunakan Data Eksplorasi. Jurnal Petro, 8(1), 20-27.
Handayani, L., & Singarimbun, A. (2016). Pemetaan Daerah Rawan Longsor Di Sekitar Daerah Prospek Panas Bumi Provinsi Jawa Barat. Journal Online of Physics, 2(1), 17-22.
Hidayat, N., & Basid, A. (2011). Analisis Anomali Gravitasi Sebagai Acuan Dalam Penentuan Struktur Geologi Bawah Permukaan dan Potensi Geothermal (Studi Kasus Di Daerah Songgoriti Kota Batu). Jurnal Neutrino, 4(1), 35-47.
Hidayat, F. S., (2011). Penyelidikan Gaya Berat untuk Pemetaan Struktur Bawah Permukaan di Daerah Karanganyar Bagian Barat.
Jamil, D.L., Hasanah, L., & Iryanti, M. (2014). Program Pembuatan Kontur Anomali Gayaberat Menggunakan Metode Mesh Polygon. Journal Online of Physics, 2(1), 1-11.
Laksminingpuri, N., & Martinus, A. (2013). Studi Kandungan dan Temperatur Gas Panas Bumi Kamojang Dengan Diagram Grid. Majalah Ilmiah Aplikasi Isotop dan Radiasi, 4(2), 69-79.
Mazaya, A., & Kurniawan, T. (2022). Collaborative Governance Pemanfaatan Energi Panas Bumi Sebagai Sumber Pembangkit Listrik (Studi Kasus Pembangkit Listrik Tenaga Panas Bumi Dieng, Jawa Tengah). Jurnal Inovasu Penelitian, 3(4), 5731-5740.
Meilani, H.M., & Wuryandai, D. (2010). Potensi Panas Bumi Sebagai Energi Alternatif Pengganti Bahan Bakar Fosil Untuk Pembangkit Tenaga Listrik Di Indonesia. Jurnal Ekonomi & Kebijakan Publik, 1(1), 47-74.
Novita, S. (2018). Kerjasama Indonesia-Islandia Dalam Pengembangan Energi Panas Bumi (Geothermal) Tahun 2007-2017. eJournal Ilmu Hubungan Internasional, 6(4), 1631-1650.
Reynolds, J. M., (1997). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons, Inc, New York.
Sari, I.P. 2012. Studi Komparasi Metode Filtering Untuk Pemisahan Regional dan Residual Dari Data Anomali Bouguer. Skripsi Prodi Fisika FPMIPA Universitas Indonesia. Depok.
Shidqi, A., Mardiana, U., Mohamad, F., & Afif, N.N.H. (2018). Zona Alterasi Pada Sumur ‘’Asj-17’’ Kaitannya Dengan Keterdapatan Panasbumi Di Kamojang, Kabupaten Bandung, Provinsi Jawa Barat. Padjajaran Geoscience Journal, 2(4), 269-276.
Sihombing, R.B., & Rustadi. (2018). Pemodelan dan Analisa Struktur Bawah Permukaan Daerah Prospek Panasbumi Kepahiang Berdasarkan Metode Gayaberat. Jurnal Geofisika Eksplorasi, 4(2), 159-172.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Annisa Vidia Agustin, Early Nabila Dennanti, Meisha Nabilla, Nabilah Bintang Haryan, Ilham Dani

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.