Published: 2025-07-01
Perbandingan Prediksi terhadap Peningkatan Jumlah Pelanggan Iconnet dengan Algoritma Regresi Linear dan Random Forest pada Wilayah Jabodetabek dan Banten
DOI: 10.35870/jtik.v9i3.3490
Fitrah Amelia Ramelan, Lukman Hakim
- Fitrah Amelia Ramelan: Universitas Mercu Buana Jakarta , Indonesia
- Lukman Hakim: Universitas Mercu Buana Jakarta , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This study compares the linear regression and random forest algorithms in predicting the number of Iconnet service customers in the Jabodetabek and Banten regions. The dataset comprises two years of sales data processed through filtering, cleaning, and labeling. Evaluation metrics include MAE, MAPE, and RMSE. The results show that linear regression performs better in predicting customer numbers, achieving MAE 369.85, MAPE 8.80%, and RMSE 388.89, compared to random forest with MAE 679.37, MAPE 16.95%, and RMSE 794.26. Conversely, random forest outperforms linear regression in bandwidth prediction (MAE 733.80, MAPE 26.61%, RMSE 860.20) and regional prediction (MAE 25607.49, MAPE 23.42%, RMSE 38177.12), as linear regression produces higher errors. The findings highlight the importance of selecting algorithms based on data characteristics and application needs. This research provides strategic insights for developing data-driven customer service solutions.
Keywords
Linear Regression ; Random Forest ; Customer Prediction
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 9 No. 3 (2025)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/jtik.v9i3.3490
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Fitrah Amelia Ramelan
Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Mercu Buana Jakarta, Kota Jakarta Pusat, Daerah Khusus Ibukota Jakarta, Indonesia.
-
Afdhal, I., Kurniawan, R., Iskandar, I., Salambue, R., Budianita, E., & Syafria, F. (2022). Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia. Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia, 5(1), 122-130.
-
Andrean, D., Susanto, R., & Hakim, L. (2021). Aplikasi Forecasting Supplier Sembako dengan Metode Least Square dan Double Exponential Smoothing. Jurnal Teknik Informatika UNIKA Santo Thomas, 386-394. https://doi.org/10.54367/jtiust.v6i2.1568.
-
Erlin, E., Desnelita, Y., Nasution, N., Suryati, L., & Zoromi, F. (2022). Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 21(3), 677-690. https://doi.org/10.30812/matrik.v21i3.1726.
-
-
Galih, M., & Atika, P. D. (2022). Prediksi Penjualan Menggunakan Algoritma Regresi Linear pada Koperasi Karyawan Usaha Bersama. Journal of Informatic and Information Security, 3(2), 193-202. https://doi.org/10.31599/jiforty.v3i2.1354.
-
Hidayat, R., Saputra, H. T., Husnah, M., Nabila, N., Hidayatullah, M. B., Nazhmi, M. N., ... & Rana, A. (2025). Implementasi Algoritma Random Forest Regression Untuk Memprediksi Penjualan Produksi di Supermarket. Jurnal Sistem Informasi dan Sistem Komputer, 10(1), 101-109. https://doi.org/10.51717/simkom.v10i1.703.
-
Ibrahim, M. R., Susanto, R., & Nurchim, N. (2024). IMPLEMENTASI SISTEM APLIKASI PEMESANAN MAKANAN MENGGUNAKAN METODE COLLABORATIVE FILTERING PADA FOOD COURT BERBASIS WEB. Jurnal Informatika Teknologi dan Sains (Jinteks), 6(3), 612-619. https://doi.org/10.51401/jinteks.v6i3.4313.
-
Kafil, M. (2019). Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso. JATI (Jurnal Mahasiswa Teknik Informatika), 3(2), 59-66. https://doi.org/10.36040/jati.v3i2.860.
-
-
Pamuji, F. Y., & Ramadhan, V. P. (2021). Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy. Jurnal Teknologi Dan Manajemen Informatika, 7(1), 46-50. https://doi.org/10.26905/jtmi.v7i1.5982.
-
Pramesti, D., & Baihaqi, W. M. (2023). Perbandingan Prediksi Jumlah Transaksi Ojek Online Menggunakan Regresi Linier dan Random Forest. Generation Journal, 7(3), 21-30. https://doi.org/10.29407/gj.v7i3.20676.
-
Setiawan, I. (2021). Rancang Bangun Aplikasi Peramalan Persediaan Stok Barang Menggunakan Metode Weighted Moving Average (WMA) Pada Toko Barang XYZ. Jurnal Teknik Informatika, 13(3), 1-9. https://doi.org/10.26905/jtmi.v7i1.5982.
-
-
Sholeh, M., Nurnawati, E. K., & Lestari, U. (2023). Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner. JISKA (Jurnal Informatika Sunan Kalijaga), 8(1), 10-21. https://doi.org/10.14421/jiska.2023.8.1.10-21.
-

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.