Published: 2024-04-01
Rancang Bangun Aplikasi Deteksi Alat Pelindung Diri (APD) untuk Pekerja Proyek dengan Menggunakan Algoritma Yolov5
DOI: 10.35870/jtik.v8i2.1960
Muhamad Alfin Taufiqurrochman, Herny Februariyanti
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The risk of work accidents that can be experienced by project workers is very high in the world of construction. This can be caused by behavioral factors, one of which is project workers' indiscipline in wearing Personal Protective Equipment (PPE), which can endanger the personal safety of project workers. By utilizing Artificial Intelligence technology, with the computer vision domain, researchers created a PPE detection application using the YoloV5 algorithm. The stage of creating this detection application starts from the process of problem scoping, data acquisition, data exploration, modeling, evaluation and deployment. The dataset used in making this application was taken from Saravana Alagar via Google Drive, covering 4 PPE objects, namely helmets, masks, vests and shoes. By conducting a training dataset of 100 epochs, the percentage results given were very good, namely helmets 96%, vests 96%, masks 95%, and shoes 92%. It is hoped that making this application can minimize cases of work accidents that occur in the project worker area and can increase discipline in using project PPE
Keywords
Personal Protective Equipment ; Artificial Intelligence ; Computer Vision ; Yolov5
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 8 No. 2 (2024)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/jtik.v8i2.1960
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Muhamad Alfin Taufiqurrochman
Program Studi Sistem Informasi, Fakultas Teknologi Informasi dan Industri, Universitas Stikubank, Kota Semarang, Provinsi Jawa Tengah, Indonesia
-
Azizah, D. N., Pulungan, R. M., Utari, D., & Amrullah, A. A. (2021). Faktor-Faktor yang Berhubungan dengan Kepatuhan Menggunakan Alat Pelindung Diri (APD) pada Pekerja Proyek Pembangunan PLTGU Muara Tawar (Persero). Jurnal Ilmiah Kesehatan Masyarakat: Media Komunikasi Komunitas Kesehatan Masyarakat, 13(3), 141-150.
-
Sofyan, M. T. (2023). Hubungan Alat Pelindung Diri Terhadap Kecelakaan Kerja; Literature Riview. JOURNAL SCIENTIFIC OF MANDALIKA (JSM) e-ISSN 2745-5955| p-ISSN 2809-0543, 4(5), 71-75. DOI: https://doi.org/10.36312/10.36312/vol4iss5pp71-75.
-
JAYANTI, U., ALI, H., REFLIS, R., RAMDHON, M., UTAMA, S., ADEKO, R., ... & SISWAHYONO, S. (2023). ANALISIS PENGGUNAAN ALAT PELINDUNG DIRI DAN KECELAKAAN KERJA PADA PEKERJA PABRIK KELAPA SAWIT DI PT. PALMA MAS SEJATI KABUPATEN BENGKULU TENGAH. Journal of Nursing and Public Health, 11(1), 272-278. DOI: https://doi.org/10.37676/jnph.v11i1.4138.
-
-
-
-
-
Nurfirmansyah, A., & Dijaya, R. (2022, August). DETEKSI KELALAIAN ALAT PELINDUNG DIRI (APD) PADA PEKERJA KONTRUKSI BANGUNAN. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 6, No. 1, pp. 058-063). DOI: https://doi.org/10.29407/inotek.v6i1.2452.
-
Ashar, M. H., & Suarna, D. (2022). Implementasi Algoritma YOLOv5 dalam Mendeteksi Penggunaan Masker Pada Kantor Biro Umum Gubernur Sulawesi Barat. KLIK: Kajian Ilmiah Informatika dan Komputer, 3(3), 298-302. DOI: https://doi.org/10.30865/klik.v3i3.559.
-
Riva, L. S., & Jayanta, J. (2023). Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 248-254. DOI: https://doi.org/10.30591/jpit.v8i3.5679.
-
-
Guntara, R. G. (2023). Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(1), 55-60. DOI: https://doi.org/10.47233/jteksis.v5i1.750.
-
Widharma, I. G. S., Santiary, P. A. W., Sunaya, I. N., Darminta, I. K., Sangka, I. G. N., & Widiatmika, P. A. W. (2022). Deteksi api kebakaran berbasis computer vision dengan algoritma YOLO. Journal of Applied Mechanical Engineering and Green Technology, 3(2), 53-58. DOI: https://doi.org/10.31940/jametech.v3i2.53-58.
-
-
-
Indaryanto, F., Nugroho, A., & Suni, A. F. (2021). Aplikasi Penghitung Jarak dan Jumlah Orang Berbasis YOLO Sebagai Protokol Kesehatan Covid-19. Edu Komputika Journal, 8(1), 31-38. DOI: https://doi.org/10.15294/edukomputika.v8i1.47837.
-
Prasanta, M. R., Pranata, M. Y., Firnanda, M. A., & Sendari, S. (2022). Rancang Bangun Quadcopter Drone Untuk Deteksi Api Menggunakan YOLOv4. CYCLOTRON, 5(1). DOI: https://doi.org/10.30651/cl.v5i1.10013.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.