Published: 2024-01-01
Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen Terhadap Kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022
DOI: 10.35870/jtik.v8i1.1202
Muhamad Samantri, Afiyati
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The commodity of fuel oil (BBM) is the main commodity and the driving force of business. The increase in world oil prices is a threat to countries around the world, one of which is Indonesia. With the turbulent conditions in several countries, the Indonesian government decided to cut fuel subsidies which had an impact on price increases. The policy invited all Indonesian people and criticized it on various social media. The purpose of this research is to find out which algorithm has a better accuracy rate and to provide input to the government about public opinion regarding the increase in fuel prices in Indonesia. From the test results both work well, this is evidenced by the accuracy value obtained, where the support vector machine algorithm produces an accuracy value of 77%, while the Random Forest algorithm produces an accuracy value of 76%. So it can be concluded that the support vector machine algorithm has a fairly good accuracy rate compared to the Random Forest algorithm.
Keywords
Sentiment Analysis ; Fuel Prices ; Support Vector Machine ; Random Forest
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 8 No. 1 (2024)
-
Section: Computer & Communication Science
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/jtik.v8i1.1202
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Muhamad Samantri
Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Mercu Buana, Kota Jakarta Barat, Daerah Khusus Ibukota Jakarta, Indonesia
-
Kurniasih, U. and Suseno, A.T., 2022. Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) pada Kenaikan Harga Bahan Bakar Minyak (BBM). Jurnal Media Informatika Budidarma, 6(4), pp.2335-2340. DOI: http://dx.doi.org/10.30865/mib.v6i4.4958.
-
Purbolaksono, M.D., Tantowi, M.I., Hidayat, A.I. and Adiwijaya, A., 2021. Perbandingan support vector machine dan modified balanced random forest dalam deteksi pasien penyakit diabetes. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(2), pp.393-399. DOI: https://doi.org/10.29207/resti.v5i2.3008.
-
Agustian, A. and Nurapriani, F., 2022. Analisis Sentimen, Text Mining Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitter. Jurnal Tika, 7(3), pp.243-249. DOI: https://doi.org/10.51179/tika.v7i3.1550.
-
Adrian, M.R., Putra, M.P., Rafialdy, M.H. and Rakhmawati, N.A., 2021. Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB. Jurnal Informatika Upgris, 7(1), pp. 36–40, 2021, DOI: https://doi.org/10.26877/jiu.v7i1.7099.
-
Syah, H. and Witanti, A., 2022. Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm). Jurnal Sistem Informasi Dan Informatika (Simika), 5(1), pp.59-67. DOI: https://doi.org/10.47080/simika.v5i1.1411.
-
-
Hanif, I.F., Affandi, I.R., Hasan, F.N., Sinduningrum, E. and Halim, Z., 2022. Analisis Sentimen Opini Masyarakat Terkait Penyelenggaraan Sistem Elektronik Menggunakan Metode Logistic Regression. Jurnal Linguistik Komputasional, 5(2), pp.77-84. DOI: https://doi.org/10.26418/jlk.v5i2.103.
-
Slamet, R., Gata, W., Novtariany, A., Hilyati, K. and Jariyah, F.A., 2022. Analisis sentimen Twitter terhadap penggunaan artis Korea Selatan sebagai brand ambassador produk kecantikan lokal. INTECOMS: Journal of Information Technology and Computer Science, 5(1), pp.145-153. DOI: https://doi.org/10.31539/intecoms.v5i1.3933
-
Tanggraeni, A.I. and Sitokdana, M.N., 2022. Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(2), pp.785-795. DOI: https://doi.org/10.35957/jatisi.v9i2.1835.
-
Nitami, M.T. and Februariyanti, H., 2022. Analisis Sentimen Ulasan Ekspedisi J&T Express Menggunakan Algoritma Naive Bayes. Jurnal Manajemen Informatika dan Sistem Informasi, 5(1), pp.20-29. DOI: https://doi.org/10.36595/misi.v5i1.396.
-
-
-
Putri, N.B. and Wijayanto, A.W., 2022. Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing. Komputika: Jurnal Sistem Komputer, 11(1), pp.59-66. DOI: https://doi.org/10.34010/komputika.v11i1.4350.
-
-
-
Miftahusalam, A., Nuraini, A.F., Khoirunisa, A.A. and Pratiwi, H., 2022, November. Perbandingan Algoritma Random Forest, Naïve Bayes, dan Support Vector Machine Pada Analisis Sentimen Twitter Mengenai Opini Masyarakat Terhadap Penghapusan Tenaga Honorer. In Seminar Nasional Official Statistics (Vol. 2022, No. 1, pp. 563-572)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.