Published: 2025-04-01
Analysis of Household Electricity Consumption Patterns Using K-Nearest Neighbor (KNN) Method
DOI: 10.35870/ijsecs.v5i1.3877
Cut Susan Octiva, Sultan Hady, Dedy Irwan, T. Irfan Fajri, Novrini Hasti
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
The increasing demand for electricity in the household sector poses significant challenges to energy efficiency initiatives and environmental conservation efforts. Examining electricity usage patterns offers a pathway to uncover key determinants that influence consumption levels while formulating more effective strategies for energy management. This study attempts to evaluate electricity consumption patterns in the household sector using the K-Nearest Neighbor (KNN) algorithm. This approach is used to categorize consumption data based on attribute similarities among household units. The findings are expected to encourage more rational electricity usage practices, thereby reducing energy inefficiencies and strengthening efforts to conserve natural resources. Furthermore, the analysis aims to provide actionable insights for households to adopt sustainable habits and for policymakers to design targeted interventions that address peak demand periods and promote the use of energy-efficient technologies. By identifying specific behavioral and technological factors that contribute to high consumption, the results can serve as a basis for tailored programs aimed at minimizing waste and promoting long-term environmental management.
Keywords
Electrical Energy Consumption ; Domestic Sector ; K-Nearest Neighbor ; Energy Efficiency ; Sustainable Practices
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3877
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Hutahaean, Y. M., & Wijayanto, A. W. (2022). Klasifikasi rumah tangga penerima subsidi listrik di Provinsi Gorontalo tahun 2019 dengan metode K-Nearest Neighbor dan Support Vector Machine. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 10(1), 63–68. https://doi.org/10.26418/JUSTIN.V10I1.51210
-
Ulum, S., Alifa, R. F., Rizkika, P., & Rozikin, C. (2023). Perbandingan performa algoritma KNN dan SVM dalam klasifikasi kelayakan air minum. Generation Journal, 7(2), 141–146. https://doi.org/10.29407/GJ.V7I2.20270
-
Irawati, L., & Sriani, S. (2024). Klasifikasi status penyelesaian masalah kelistrikan pelanggan PLN menggunakan algoritma K-Nearest Neighbor (KNN). INFORMATIKA, 16(2), 297–306. https://doi.org/10.36723/JURI.V16I2.728
-
Fiqri, M. S., & Bhakti, H. D. (2024). Klasifikasi potensi penyakit diabetes mellitus tipe II pada pasien menggunakan algoritma KNN (K-Nearest Neighbor). JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 7305–7313. https://doi.org/10.36040/JATI.V8I4.10133
-
Siswanto, A., Haji, W. H., Suryadi, D., Hady, S., & Setiawan, Z. (2024). Training on the use of appropriate technology to increase agricultural production in villages in Indonesia. Unram Journal of Community Service, 5(3), 149–154. https://doi.org/10.29303/UJCS.V5I3.673
-
Dostmohammadi, M., Pedram, M. Z., Hoseinzadeh, S., & Garcia, D. A. (2024). A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods. Journal of Environmental Management, 364, Article 121264. https://doi.org/10.1016/J.JENVMAN.2024.121264
-
Zhang, X., Ramírez-Mendiola, J. L., Li, M., & Guo, L. (2022). Electricity consumption pattern analysis beyond traditional clustering methods: A novel self-adapting semi-supervised clustering method and application case study. Applied Energy, 308, Article 118335. https://doi.org/10.1016/J.APENERGY.2021.118335
-
Zhao, P., Dong, Z. Y., Meng, K., Kong, W., & Yang, J. (2021). Household power usage pattern filtering-based residential electricity plan recommender system. Applied Energy, 298, Article 117191. https://doi.org/10.1016/J.APENERGY.2021.117191
-
Mao, Y., E, S., & Zhu, C. (2024). Modern developments and analysis of household electricity utilization by applying smart meter and its findings. Energy, 310, Article 132116. https://doi.org/10.1016/J.ENERGY.2024.132116
-
Young, T. L., Gopsill, J., Valero, M., Eikevåg, S., & Hicks, B. (2024). Comparing four machine learning algorithms for household non-intrusive load monitoring. Energy and AI, 17, Article 100384. https://doi.org/10.1016/J.EGYAI.2024.100384
-
Attar, A. A., Schirle, F., & Hofmann, M. (2022). Noise added on interpolation as a simple novel method for imputing missing data from household’s electricity consumption. Procedia Computer Science, 207, 2253–2262. https://doi.org/10.1016/J.PROCS.2022.09.284
-
Tsao, Y. C., Rahmalia, D., & Lu, J. C. (2024). Machine-learning techniques for enhancing electricity theft detection considering transformer reliability and supply interruptions. Energy Reports, 12, 3048–3064. https://doi.org/10.1016/J.EGYR.2024.08.068
-
Palaniappan, S., Karuppannan, S., & Velusamy, D. (2024). Categorization of Indian residential consumers electrical energy consumption pattern using clustering and classification techniques. Energy, 289, Article 129992. https://doi.org/10.1016/J.ENERGY.2023.129992
-
Shahsavari-Pour, N., Heydari, A., Keynia, F., Fekih, A., & Shahsavari-Pour, A. (2025). Building electrical consumption patterns forecasting based on a novel hybrid deep learning model. Results in Engineering, Article 104522. https://doi.org/10.1016/J.RINENG.2025.104522
-
Anwar, C., A, C. H. S., Hady, S., Rahayu, N., & Kraugusteeliana, K. (2023). The application of Mobile Security Framework (MOBSF) and Mobile Application Security Testing Guide to ensure the security in mobile commerce applications. Jurnal Sistem Informasi dan Teknologi, 5(2), 97–102. https://doi.org/10.37034/JSISFOTEK.V5I2.231
-
Zuriati, Z., & Qomariyah, N. (2022). Klasifikasi penyakit stroke menggunakan algoritma K-Nearest Neighbor (KNN). Routers Jurnal Sistem dan Teknologi Informasi, 1(1), 1–8. https://doi.org/10.25181/rt.v1i1.2665
-
Purbaningrum, S. (2016). Audit energi dan analisis peluang penghematan konsumsi energi listrik pada rumah tangga. Media Mesin Majalah Teknik Mesin, 15(1). https://doi.org/10.23917/mesin.v15i1.2297
-
Nugrahadi, R., Farizky, M., Dewantari, T., Karnoto, K., & Zahra, A. (2023). Analisis pencahayaan dan peluang penghematan energi listrik di gedung rektorat Universitas Katolik Soegijapranata. Transient Jurnal Ilmiah Teknik Elektro, 12(4), 149–158. https://doi.org/10.14710/transient.v12i4.149-158
-
Radityatama, C., Windarta, J., & Handoyo, E. (2021). Analisa indeks konsumsi energi dan kualitas daya listrik di kampus Undip. Transient Jurnal Ilmiah Teknik Elektro, 10(1), 168–175. https://doi.org/10.14710/transient.v10i1.168-175
-
Nasution, M., & Hayaty, M. (2019). Perbandingan akurasi dan waktu proses algoritma K-NN dan SVM dalam analisis sentimen Twitter. Jurnal Informatika, 6(2), 226–235. https://doi.org/10.31311/ji.v6i2.5129
-
Saputra, R. (2024). Peningkatan akurasi penggunaan daya aktif kepada pelanggan potensial PLN ULP Batu melalui pengukuran tidak langsung. Jurnal Informatika dan Teknik Elektro Terapan, 12(1). https://doi.org/10.23960/jitet.v12i1.3758
-
Insani, D., Badriana, B., & Daud, M. (2019). Analisis peramalan kebutuhan energi listrik untuk Kabupaten Bireuen menggunakan perangkat lunak LEAP. Jurnal Nasional Teknik Elektro, 8(1), 32. https://doi.org/10.25077/jnte.v8n1.608.2019
-
Sagala, N., & Tampubolon, H. (2018). Komparasi kinerja algoritma data mining pada dataset konsumsi alkohol siswa. Khazanah Informatika Jurnal Ilmu Komputer dan Informatika, 4(2), 98–103. https://doi.org/10.23917/khif.v4i2.7061.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright and Licensing Agreement
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
- Authors retain full copyright of their work
- Authors grant the journal right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
- This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.