Stock Portfolio Analysis with Machine Learning Algorithmic Approach for Smart Investment Decisions

Main Article Content

Munawir
Upik Sri Sulistyawati

Abstract

This study investigates the application of machine learning algorithms in stock portfolio analysis within the Indonesia Stock Exchange (IDX) and their impact on investment decision-making. By engaging 500 respondents from diverse market segments, including retail investors, institutional investors, and stock traders, the research provides a comprehensive overview of adopting and utilising machine learning technologies in the Indonesian stock market. The findings reveal that over 80% of respondents have integrated machine learning algorithms into their investment strategies. The algorithms are applied in various capacities: 45% of respondents use them for portfolio risk analysis, 30% for stock price prediction, and 25% for identifying new investment opportunities. Preferences for specific algorithms vary, with regression, Support Vector Machines (SVM), and Random Forest emerging as the most used tools. The integration of machine learning was strongly associated with improved investment decisions, as more than 60% of respondents reported enhanced portfolio performance and greater accuracy in their decision-making. These results highlight the transformative potential of machine learning algorithms in enabling more innovative and more adaptive investment strategies.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Munawir, Institut Teknologi dan Bisnis Muhammadiyah Bali

Digital Business Study Program, Institut Teknologi dan Bisnis Muhammadiyah Bali, Jembrana Regency, Bali Province, Indonesia

Upik Sri Sulistyawati, Institut Teknologi dan Bisnis Muhammadiyah Bali

Entrepreneurship Study Program, Institut Teknologi dan Bisnis Muhammadiyah Bali, Jembrana Regency, Bali Province, Indonesia

How to Cite

Munawir, & Sulistyawati, U. S. (2024). Stock Portfolio Analysis with Machine Learning Algorithmic Approach for Smart Investment Decisions. International Journal Software Engineering and Computer Science (IJSECS), 4(3), 860-870. https://doi.org/10.35870/ijsecs.v4i3.2606

References

Retnoningsih, E., & Pramudita, R. (2020). Mengenal machine learning dengan teknik supervised dan unsupervised learning menggunakan Python. Journal of Informatics, 7(2), 156. https://doi.org/10.51211/biict.v7i2.1422

Fadilah, W. R. U., Agfiannisa, D., & Azhar, Y. (2020). Analisis prediksi harga saham PT. Telekomunikasi Indonesia menggunakan metode support vector machine. Finance Journal, 5(2), 45–51. https://doi.org/10.21111/fij.v5i2.4449

Patriya, E. (2020). Implementasi support vector machine pada prediksi harga saham gabungan (IHSG). Jurnal Ilmiah Teknologi dan Rekayasa. https://doi.org/10.35760/tr.2020.25i1.2571

Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma support vector machine (SVM). Journal of Technology, 8(1), 147–156. https://doi.org/10.25126/jtiik.0813944

Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021). Prediksi kemungkinan diabetes pada tahap awal menggunakan algoritma klasifikasi random forest. SISTEMASI, 10(1), 1129. https://doi.org/10.32520/stmsi.v10i1.1129

Windarto, A. P., et al. (2017). Predicting growth of retail treasury bonds using artificial neural networks. Economic Growth Journal, 4(2), 184–197. https://doi.org/10.20527/klik.v4i2.90

Ainurrachma, M., & Mawardi, I. (2022). Market reaction to the merger of state-owned Islamic banks. Journal of Islamic Economics Theory and Application, 9(1), 92–105. https://doi.org/10.20473/vol9iss20221pp92-105

Halimi, I., Marthasari, G. I., & Azhar, Y. (2019). Predicting gold prices using univariate convolutional neural network. Jurnal Repositor, 1(2), 105–116. https://doi.org/10.22219/repositor.v1i2.612

Diasmara, A. D., Mahastama, A. W., & Chrismanto, A. R. (2021). Sistem cerdas permainan papan "The Battle of Honor" dengan decision making dan machine learning. Jurnal Buana Informatika. https://doi.org/10.24002/jbi.v12i2.4905

Fitriana, D., Andini, R., & Oemar, A. (2016). Pengaruh likuiditas, solvabilitas, profitabilitas, aktivitas dan kebijakan dividen terhadap return saham perusahaan pertambangan yang terdaftar pada BEI periode 2007–2013. Journal of Accounting, 2(2).

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Education.

Saunders, M., Lewis, P., & Thornhill, A. (2016). Research methods for business students (7th ed.). Pearson Education.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Routledge. https://doi.org/10.4324/9780203774441

Fitriana, T., Nugroho, S., & Putri, H. (2016). The impact of macroeconomic variables on investment decisions. Economic Policy Review, 15(3), 90–108.

Foglia, M., Recchioni, M., & Polinesi, G. (2021). Smart beta allocation and macroeconomic variables: The impact of COVID-19. Risks, 9(2), 34. https://doi.org/10.3390/risks9020034

Fauzie, S., Soeparno, W., & Tampubolon, E. (2019). The influence of macroeconomic on optimal portfolio returns from banking shares. https://doi.org/10.4108/eai.8-10-2018.2288736

Zainuri, Z. (2021). Effectiveness of controlling foreign portfolio investment inflows using macroeconomic policy instruments and institutional strengthening (case study in Indonesia and Thailand). Jurnal Penelitian Ekonomi dan Bisnis, 6(2), 121–134. https://doi.org/10.33633/jpeb.v6i2.4446

Hong, L., Lamberson, P., & Page, S. (2021). Hybrid predictive ensembles: Synergies between human and computational forecasts. Journal of Social Computing, 2(2), 89–102. https://doi.org/10.23919/jsc.2021.0009.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)