International Journal Software Engineering and Computer Science (IJSECS)
5(2), 2025, 633-644

Published Online August 2025 in IJSECS (http://www.journal.lembagakita.org/index.php/ijsecs)

P-ISSN: 2776-4869, E-ISSN: 2776-3242. DOL: https://doi.org/10.35870/ijsecs.v5i2.4207.

RESEARCH ARTICLE Open Access

Implementation of Zero-Knowledge Encryption in a
Web-Based Password Manager

R. Krisviarno Darmawan *

Informatics Engineering Study Program, Faculty of Information Technology, Universitas Kristen Satya Wacana,
Salatiga City, Central Java Province, Indonesia.

Corresponding Email: 672021082@student.uksw.edu.

Ariya Dwika Cahyono

Informatics Engineering Study Program, Faculty of Information Technology, Universitas Kristen Satya Wacana,
Salatiga City, Central Java Province, Indonesia.

Email: ariyadc@uksw.edu.

Received: May 7, 2025; Accepted: June 30, 2025, Published: August 1, 2025.

Abstract: The secure management of account credentials presents a considerable challenge in the digital
era, as many users continue to engage in unsafe practices such as password reuse. Conventional password
managers typically store encrypted data on servers, which introduces risks if those servers are
compromised. This study develops a web-based password manager that implements Zero-Knowledge
Encryption (ZKE), ensuring that all essential cryptographic operations are executed exclusively on the client
side (browser). Employing a client-server architecture (React frontend, Python/FastAPI backend), the
system derives encryption keys from the user’s master password using Argon2id (4 iterations, 64 MB
memory, 1 parallelism), and performs credential data encryption and decryption with AES-GCM entirely on
the client side. The server is limited to receiving and storing encrypted data (verifier, salt, data blobs),
without ever accessing the master password or plaintext credentials. Network payload analysis conducted
with Chrome DevTools confirms that the ZKE implementation effectively prevents the exposure of sensitive
data to the server. This approach substantially improves data privacy and security against server-side
threats. Nevertheless, the ZKE model lacks an account recovery feature, placing full responsibility on users
to protect their master passwords—a trade-off that underscores the need for further investigation into ZKE-
compatible recovery mechanisms.

Keywords: Password Manager; Zero-Knowledge Encryption; Client-Side Encryption; Web Security;
Argon2id; AES-GCM; Python; FastAPI.

1. Introduction

As daily activities increasingly require multiple application accounts, protecting personal data has become
a major concern for internet users. The rise in online services means that people must manage a growing
number of account credentials securely and efficiently. Survey results show that most users (60%) handle
between one and ten online accounts, while 24% manage ten to twenty. Data also indicates that 74% of users
reuse passwords across several accounts, and only 26% regularly change their passwords. This trend suggests
that convenience often takes precedence over security. In addition, 46% of users include personal information
in their passwords, and 29% rely on common dictionary words, making their passwords more vulnerable to
attacks. Although the majority (56%) use passwords with lengths between 8 and 12 characters, frequent
reuse and a lack of diversity in password composition continue to be significant weaknesses in digital security.

© The Author(s) 2025, corrected publication 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made. The images or other third-party material in this article are included in the article’s Creative Commons license unless stated otherwise
in a credit line to the material. Suppose the material is not included in the article’s Creative Commons license, and your intended use is
prohibited by statutory regulation or exceeds the permitted use. In that case, you must obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

https://journal.lembagakita.org/index.php/ijsecs/ais

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

Password managers have emerged as a way to help users maintain multiple unique and complex passwords
in a secure and practical manner [1].

Despite their benefits, conventional password managers typically store encrypted data on servers. If these
servers are compromised, there remains a risk that encrypted passwords could be exposed. The main issue
lies in the decryption process performed on the server side, which creates a moment when sensitive data may
be accessible before further processing. Users also have to place their trust in service providers to manage
encryption keys properly. These concerns have led to the adoption of Zero-Knowledge Encryption (ZKE), where
even the service provider cannot access user data in its original form, helping to maintain privacy and security
even if a server breach occurs. In cryptography, "Zero-Knowledge" refers to two distinct ideas: Zero-
Knowledge Proofs (ZKP) and Zero-Knowledge Encryption (ZKE). Knowing the difference between these
concepts is essential for understanding their roles in security systems. Zero-Knowledge Proofs (ZKP) allow one
party (the prover) to convince another (the verifier) that a statement is true, without revealing anything
beyond the validity of the statement itself. This method was first introduced in 1985 by Shafi Goldwasser,
Silvio Micali, and Charles Rackoff, in their work "The Knowledge Complexity of Interactive Proof Systems." ZKP
is widely used in authentication protocols that require identity verification without exposing sensitive details
[2].

Zero-Knowledge Encryption (ZKE), on the other hand, ensures that only the person holding the decryption
key—the user—can convert encrypted data back to its original form. All encryption and decryption take place
on the client side, such as within the browser, so service providers never have access to the plaintext data.
This approach keeps user privacy and security intact, even if the server storing encrypted data is breached.
Given this distinction, Zero-Knowledge Encryption (ZKE) has been chosen as the foundation for research and
development in building a web-based password manager. To implement ZKE in a web-based password
manager, all cryptographic processes are handled within the user's browser. The server only receives and
stores ciphertext, not encryption keys or other sensitive information. Even if the server is compromised, the
original data remains protected because the keys never leave the user's device. This client-side encryption
model, however, requires careful attention to the JavaScript code responsible for encryption and decryption,
as well as secure key management, to prevent threats like Man-in-the-Middle (MITM) attacks or code injection.
With ZKE’s ability to address the limitations of conventional models and its unique challenges on web platforms,
this research aims to design, build, and evaluate a web-based password manager that applies Zero-Knowledge
Encryption principles throughout.

2. Related Work

Several studies have examined the security and usability challenges of password managers. In "Why
People (Don't) Use Password Managers Effectively", researchers identified critical vulnerabilities that affect
user data security in password manager applications. One notable issue is the storage of passwords in
temporary folders in plaintext, making them easily accessible to third parties. The study also highlights that,
without robust end-to-end encryption, sensitive data remains at risk during both processing and storage. To
address these concerns, Zero-Knowledge Encryption (ZKE) in web-based password managers is proposed as
a relevant solution. With ZKE, passwords and other sensitive information are encrypted on the client side
before being transmitted to the server. This ensures that only users hold the encryption keys, preventing
servers from accessing user data and thereby increasing user trust in sensitive data management [3].

Beyond technical vulnerabilities, user behavior also plays a significant role in password security. The study
"Adopting Password Manager Applications among Smartphone Users" surveyed participants about their daily
password management practices. The majority admitted to reusing a single main password across multiple
sites or making only minor modifications, a practice that exposes many accounts if the password is
compromised. Furthermore, 30% of respondents acknowledged using personal information, such as pet names
or birth dates, to make passwords easier to remember. Additionally, 17% stored passwords in browser-based
managers, and another 17% recorded them in physical notebooks. These habits reflect a tendency to prioritize
convenience over security, underscoring the need for password managers with ZKE to store unique passwords
securely, without risking plaintext storage on devices or browsers [4].

Trust issues regarding password manager providers are also significant. In "Password Managers—It's All
about Trust and Transparency", 134 out of 247 online survey participants reported not using password
managers. The main reason, cited by 41.8% of respondents, was a lack of trust in third-party providers to
securely store passwords. Other reasons included insufficient transparency, with 38.1% stating they did not
know where their passwords would be stored, and 22.4% unsure of how their online passwords would be
processed. Security concerns were also prominent: 35.8% feared all their passwords would be leaked if the
database was hacked, and 26.1% worried that if their master password was compromised, all their stored
passwords would be exposed [5].

Copyright © 2025 IJSECS
International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

To address technical and trust challenges, recent works have proposed improved security models. For
example, "An Enhanced Web Security for Cloud-Based Password Management" introduces a cloud-based
password manager that implements cryptographic hash functions (SHA-256) and Diffie-Hellman key exchange
to achieve ZKE. By encrypting data on the client side before transmission, the server never gains access to
plaintext, significantly reducing the risk of sensitive data theft [6]. A comparative analysis of paid password
managers, as presented in "Analisis Komparatif Keamanan Aplikasi Pengelola Kata Sandi Berbayar Lastpass,
1Password, dan Keeper Berdasarkan ISO/IEC 25010", provides insight into the algorithms used by popular
desktop password managers. Table 1 summarizes the comparison:

Table 1. Desktop Password Manager Comparison

Name Lastpass 1Password Keeper
Algorithm AES-256 (CBC) + PBKDF2- AES-256 (GCM) + PBKDF2 AES-256 + PBKDF2
SHA256 (100,100) (100,000) - HMAC-SHA256 (100,000)

All three applications use AES-256 bit encryption for user data. The differences lie in the encryption mode, the
number of PBKDF2 rounds, and the hash functions used [7]. For browser-based password managers, "That
Was Then, This Is Now: A Security Evaluation of Password Generation, Storage, and Autofill in Browser-Based
Password Managers" presents an overview of encryption practices:

Table 2. Browser Password Manager Comparison

System Encryption KDF KDF Rounds Storage
Chrome OS Dependent - - File (.sqlite)
Edge Windows Vault - - Windows Vault
Firefox 3DES SHA-1 1 File (.json)
IE Windows Vault - - Windows Vault
Opera OS Dependent - - File (.sqlite)
Safari 0OS X Keychain - - 0OS X Keychain

According to Table 2, only Firefox performs its own encryption on storage, using 3DES and SHA-1 for key
generation. Other browsers delegate encryption to the operating system. On Windows, Chrome and Opera
use CryptProtectData, which ties the encryption key to the active user account; on Linux, they use GNOME
Keyring or KWallet, and if both fail, passwords are stored as plaintext. On macOS, Apple Keychain is used.
Because encryption is managed outside the browser, users of Chrome, Edge, Opera, and Safari are not offered
the option to set a master password. The security of the vault is limited to the security of the OS account,
while Firefox enables additional protection with a master password managed directly by the browser [8].

3. Research Method

To address the objectives and fill the gaps identified in previous studies, this research focuses on applying
Zero-Knowledge Encryption (ZKE) in a web-based password manager developed in Python. The development
process follows the Agile Software Development Life Cycle (SDLC), which supports iterative progress and
regular improvements based on feedback throughout each stage. Agile is well-suited for projects that require
flexibility and quick adaptation [9]. For example, when choosing the encryption algorithm, several options are
tested and swapped as needed before settling on a final approach that best fits the project’s requirements.
Python was chosen for its extensive cryptography libraries, which simplify the implementation of complex
algorithms. Its clean, concise syntax also helps streamline development within the Agile framework.

Copyright © 2025 IJSECS
635 International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

Requirements Testing Review

Desain Development Deploy

Figure 1. Agile Development Approach

Figure 1 outlines the main stages of application development. Work progresses in sprints, each building
on the previous iteration. The initial sprint focuses on setting up the core architecture, using FastAPI for the
backend—selected for its speed and ability to build robust APIs—and configuring the database. For the
frontend, React and Vite are used. Once the backend, frontend, and database are able to communicate reliably,
the next step is to implement data handling with Zero-Knowledge Encryption. Here, passwords are encrypted
on the client side before being sent to the server. After the basic configuration is complete, additional security
measures are put in place.

Since most cryptographic operations run on the client side, extra care is taken to secure memory.
Following techniques described in “Keep Your Memory Dump Shut: Unveiling Data Leaks in Password
Managers,” sensitive information is removed from memory after processing, encryption (such as AES-256) is
applied, and data padding is used to reduce predictable patterns that attackers could exploit [10]. The
application also provides a random password generator for users. The logic for this feature is inspired by “An
Effective Mechanism For Securing And Managing Password Using AES-256 Encryption & PBKDF2.” Passwords
are created from a pool of 75 characters: uppercase and lowercase letters, digits (0-9), and special symbols
(~@#$%N&*-_+=). For a password with 12 characters, the total number of possible combinations is 7512
[11]. Testing is carried out throughout development, not just at the end. Chrome Devtools are used to examine
the code, especially the cryptographic functions and ZKE implementation, while black box testing checks
functional aspects. OWASP ZAP is used for overall security assessment. OWASP ZAP was selected for
penetration testing based on findings from “A Comparative Analysis of Web Application Vulnerability Tools."”

Table 3. Penetration Testing Results [12]

ZAP Vega Arachni
SQL Injection 7 6 5
XSS 34 10 29

Table 3 compares the detection of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities among
three tools. ZAP leads, identifying 7 SQL Injection cases and 34 XSS cases (including 18 DOM-based). In
contrast, Arachni found 29 XSS issues and 5 SQL Injection cases, two of which were Blind SQL Injection. Vega
reported 10 XSS and 6 SQL Injection vulnerabilities, plus 3 potential SQL Injection cases. ZAP consistently
produced the most findings for both categories [12]. The chosen testing methods help quickly spot and resolve
issues during each development cycle. Regular sprints keep reliability, security, and user experience at the
forefront. This ongoing process maintains code quality and allows the team to respond promptly to new
requirements or bugs, resulting in a password manager that is both secure and easy to use.

Copyright © 2025 IJSECS
636 International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

User

A A

Web Interface

h 4

Master Pazsword [

¥
o

ZK Encryption

—

" -
API Endpoints Server H

Figure 2. Basic Application Flow

Figure 2 shows the general workflow. When users access the application, they can register or log in.
Registration involves creating a master password; login requires entering a username and master password.
After successful authentication, users can manage their passwords. All sensitive data is encrypted locally in
the browser before being sent to the server, thanks to ZKE. The backend handles requests through API
endpoints and interacts with the database, which stores only encrypted passwords and non-sensitive
metadata. This approach helps protect user privacy even if the server is compromised.

4. Result and Discussion

4.1 Results

This section explains the implementation and analysis of a web-based password manager that applies
Zero-Knowledge Encryption (ZKE). The discussion covers system architecture, core and supporting features,
and the cryptographic workflow across the frontend, backend, and database, all designed to align with ZKE
principles. The application uses a client-server model. The backend, developed with FastAPI (Python), provides
APIs for authentication and encrypted data storage. The frontend, built with React (JavaScript), manages the
user interface and executes all cryptographic operations on the client side, including key derivation, encryption,
decryption, and hashing. The PostgreSQL database only stores encrypted or hashed information; sensitive
data in plaintext never reaches the server. Communication between frontend and backend is protected using
JSON Web Tokens (JWT), which authenticate API requests after users log in [13].

Server-
Side

Client Web Server
Side, (FastAPI)
React Ul
’ Cryptojs di | N

Kiien T = Server tidak
‘) pernah
Handling Endpoint PE;‘:;3£L) +{ menyimpan data

penting dalam
plaintext

Local Storage Browser

Tabel 'encrypted vault' f-----f--- B
too...]l Menyimpan
Hashed Website,
Encrypted blob
Menyimpan :
Tabel 'zero_auth’ [----------------- -] Hashed User,
Salt, Verifier

Figure 3. Program Flow

Copyright © 2025 IJSECS
637 International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

Figure 3 shows the backend, frontend, and database structure. All cryptographic processes—salt
generation, key derivation with Argon2id, and AES-GCM encryption—run in crypto.js on the client side. The
main database tables are zero_auth (for hashed usernames, salts, and verifiers) and encrypted_vault (for
encrypted data blobs and metadata hashes). To understand how ZKE works during registration, refer to Figure
4. All essential cryptographic steps take place locally in the user’s browser. First, the client generates a unique
salt. This salt acts as a random secret added to the master password, ensuring that even if two users have
the same master password, their “fingerprints” (hashes or verifiers) are different. This makes rainbow table
attacks much less effective.

Client-Side (Browser/React)

User Membuat Username dan Master
Password

1. Menerima Input

I

2. Normalisasi & Hash Username -
Menghasilkan HashedUsername

v

3. Generasi & Menghasilkan Salt

I

|4. Derivasi Kunci Menggunakan ArgonZ2id
- Menghasilkan DerivedKey

v

5. Membuat Verifier Dengan SHA256 -

Menghasilkan Verifier Server
6. Menyiapkan API Payload Dengan 7. Menerima POST /api/auth/setup
HashedUsername, Salt, Verifier Request Dengan Payload
8. Validasi Input Data
Database
10. Menyimpan HashedUsername, Salt, 9. Instruksi Menyimpan Auth Data ke
Verifier di zero_auth table Database

11. Generasi Token JWT

|

12. Mengirim Respon Sukses dan
Token JWT ke Client

Figure 4. Program Registration Flow

The client then uses Argon2id (with four iterations and 64 MB memory) to produce a derived key from
the master password and salt. This process is intentionally resource-intensive, slowing down brute-force
attempts. The derived key is used for cryptographic tasks, such as creating the verifier or encrypting and
decrypting vault data, rather than using the master password directly. Usernames are normalized (converted
to lowercase and trimmed) and hashed with SHA-256, creating a digital fingerprint that cannot be reversed.
This protects the original username from exposure on the server. A verifier is created by hashing the derived
key with SHA-256 and encoding it in Base64. Only the hashed username, salt (Base64), and verifier are sent
to the /api/auth/setup endpoint. The server stores these values, never receiving the master password or
derived key [14]. After registration, the login process (see Figure 5) also relies on client-side cryptography.
The client sends a request to /api/auth/salt with the normalized and hashed username. The server retrieves
the salt from the zero_auth table and returns it. The browser repeats key derivation using Argon2id with the
entered master password and salt, producing the derived key. The client then creates a verifier (SHA-256
hash, Base64) and sends it to /api/auth/verify. The server checks this verifier against the stored value. If they
match, the server issues a JIWT token (HS256) to confirm successful authentication. Throughout this process,
the master password and derived key remain in the browser; the server only sees the hashed username, salt,
and verifier, and manages JWT validation and ciphertext storage.

Copyright © 2025 IJSECS
International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

Clent-Side (Browser/React)

User Memasukan Username &
Master Password

| 1. Menerima Input |

¥

2. Normalisasi & Hash Username -
Menghasilkan HashedUsername

v

| 3. Menyiapkan API Payload dengan

HashedUsername

¥

Server | 4. Meminta Salt dari Server |

5. Menerima POST /apifauth/salt
Regquest dengan HashedUsername

Y

ba. Menginstruksi Database untuk
Fetch Salt

v
|

I 5c. Kirim Salt Kembali Client |

—

x —]

-18 Menerima Salt dari Respon Server

v

7. Derive Key Menggunakan
JArgon2id - Menghasilkan DerivedKey

!

| 8. Buat Verifier using SHA256 - |

Menghasilkan Verifier

¥

| 9. Menyiapkan API Payload dengan

Verifier

Y

10. Kirim Verifier ke Server Untuk
Verifikasi

Database

| 11. Menerima POST /apilauth/verify

v Request dengan Verifier
5b. Mencari Tabel Salt di
zero_auth Menggunakan T
HashedUsername 11a. Instruksi ke Database Untuk J 13. Menerima Respons Sukses
Mencari User Berdasarkan Verifier Dengan Token JWT
11b. Mencari Data User di ika User Ditemukan, Generasi Token| 14. Simpan Token JWT, Simpan
zero_auth table Dengan [« DerivedKey di memory
verifier yang Sesuai l

|12 Kirim Respon Sukses atau Gaga\l

Figure 5. Program Login Flow

Beyond registration and login, ZKE is used for credential management. All credential data (site name,
username, password, and URL) is encrypted in the browser before being sent to the server. The encryption
uses AES-256 GCM 1V, chosen for its speed and high security [15]. The encrypted data is encoded in Base64
and sent to the database. The database stores the encrypted blob (in JSON with Base64 strings), together
with the hashed site name and username. When users want to view a password, the application requests the
encrypted package from the server using the hashed site name. The frontend decrypts it locally using the
secret key derived from the master password. This key is kept in local memory during the session and never
leaves the browser, ensuring only the user can read the password [16]. The AES-GCM encryption key is not
stored directly; it is recreated from the master password when needed. The system’s security relies on
cryptographic operations performed on the client. Key derivation uses Argon2id with the following parameters:

Code Snippet 1. Argon2id Parameters
const params = {

password: masterPassword,

salt: saltArray,

iterations: 4,

memorySize: 65536, // 64 MB

hashLength: 32,

parallelism: 1,

outputType: "binary",

These settings balance security and client-side performance. Four iterations provide enough security
without slowing down the user experience. The memory size (64 MB) helps defend against GPU and ASIC

Copyright © 2025 IJSECS
International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

attacks. The hash length (32) ensures a 256-bit derived key. Setting parallelism to 1 keeps security consistent
across devices, using only one thread. The salt is a random value added to the password before processing.
This configuration follows OWASP recommendations for memory size above 48 MiB [17]. Argon2id was
selected after testing its resistance to attacks such as rainbow tables, slow function overruns, GPU and
FPGA/ASIC attacks, and implementation flaws. Argon2id performed better than other algorithms in these tests
[18]. Credential and authentication data must be stored persistently. The application uses PostgreSQL. The
zero_auth table stores the hashed username, salt, and verifier. The encrypted_vault table contains the item
ID, hashed username, hashed site name, and the encrypted credential blob. Site names are also hashed with
SHA-256 on the client before being stored or queried. To display readable site names in the UI, the app
maintains a map that links plaintext site names to their hashed versions, updating it as users interact with the
vault. CRUD operations for credentials are implemented as follows:

1) Create: Data is encrypted in the browser and sent (along with the hashed site name) to /api/vault/add.
2) Read: The client requests data from /api/vault/credentials using the hashed site name, receives the

encrypted blob, and decrypts it locally.
3) Update: Similar to Create, but uses /api/vault/item (PUT) with the item ID.
4) Delete: Sends a request to /api/vault/item (DELETE) with the item ID and hashed site name.

Throughout these operations, the server only stores data and cannot decrypt user information. The
application also includes a secure random password generator, running entirely in the browser. In addition to
external security evaluation and protocol validation, the application includes a mechanism to protect sensitive
data in client memory during active sessions. The clearKeys() function wipes the master password and derived
key from JavaScript memory when users log out or their session ends. The main logic is shown below:

Code Snippet 2. Memory Wipe Function
clearKeys () {
if (this. keys?.rawKey instanceof Uint8Array) {
this. keys.rawKey.fill (0);
}
if (this. masterPassword) {
this. masterPassword = "0".repeat (this. masterPassword.length) ;
}
this. keys = null;
this. masterPassword = null;
this. initialized = false;

This function overwrites the raw key byte array and the master password variable with zeros, then sets
their references to null so the browser’s garbage collector can reclaim the memory. The goal is to minimize
the window during which sensitive data remains accessible in client memory. It's important to distinguish
between the mechanisms that define ZKE and standard security practices for password managers. The core
ZKE features in this system include:

1) Key derivation exclusively on the client using Argon2id and the master password

2) End-to-end encryption and decryption of credential data using AES-GCM in the browser

3) Authentication using a cryptographic verifier, so the server never receives the master password or raw
encryption key

4) Server-side storage limited to salt, verifier, and encrypted data blobs

These ZKE-driven features are supported by other best practices, such as using industry-standard
cryptography, hashing usernames and site names for extra privacy, session management via JWT, secure
password generation, IP-based rate limiting, and input validation. Adopting ZKE in this password manager has
both strengths and trade-offs. The main advantage is strong security and privacy: the master password never
leaves the browser, so the server has no knowledge of the user’s secret. Even if the database is breached,
attackers only obtain salts, verifiers (hashes of derived keys), and encrypted data, but not the master password
or decryption keys. The verifier allows authentication without exposing the encryption key. However, the most
significant limitation is the lack of account recovery if users forget their master password. The application
cannot provide a recovery mechanism, placing full responsibility on users to remember their master password
and secure their devices, since all crucial cryptographic processes happen locally. This trade-off prioritizes
server-side security and user privacy over account recovery convenience.

Testing was carried out on the application using browser developer tools. During these tests, various
payloads were observed while performing login, registration, and several actions in the vault.

Copyright © 2025 IJSECS
640 International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

X Heade =T B Timing Name eaders Pay| p] se Initiator Timr

¥Request Payload heck-username

Figure 6. Payload Check Username Figure 7. Response Check Username

Figure 6 shows the payload sent to the server during the initial login step, where the system checks whether
a username is available. The transmitted data is already protected and not sent as plain text. In Figure 7, if
the response is true, the username is still available and has not yet been registered in the database.

Name eade ' se Initiator ~ Timing

salt

Figure 8. Payload Setup Figure 9. Payload Salt

Figure 8 displays the payload sent to the server after the user sets a master password and proceeds with
registration. The username, salt, and verifier are all hashed before storage. Notably, the master password
itself is never transmitted to the server. Figure 9 illustrates the login process. The client sends the hashed
username to the salt endpoint, and the server’s reply is shown in the next figure.

X Headars
~Request Payload
v {ver
es

{3 websites

Figure 10. Response Salt Figure 11. Payload Verify

Figure 10 confirms that the server returns the salt associated with the hashed username. Once the salt is
received, the client needs to prove knowledge of the correct master password without actually sending it. To
do this, the client computes a verifier using the master password and salt, then sends this verifier to the /verify
endpoint. As shown in Figure 11, only the verifier is shared—neither the actual master password nor the secret
encryption key ever leaves the client.

X Headers Pa

vRequest Paylosd

Figure 12. Response Verify Figure 13. Credential Payload

The server checks whether the provided verifier matches the one stored during registration. If they match, as
shown in Figure 12, the server approves the login (success: true), returns a session token (JWT), and grants
access—all without ever knowing the master password. When users create credentials for a chosen website,
the client sends a payload similar to that in Figure 13. All transmitted data is already hashed.

x

Password Manager

Figure 14. Item Payload Figure 15. Website Name Display

Figure 14 shows the browser log generated when a user updates a credential for a website (CqAgC...). The
new data is also encrypted (odd/V...). Figure 15 demonstrates that decryption happens entirely on the client

Copyright © 2025 IJSECS
International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

side. The server only provides the hashed version (CqAgC...), but the UI reveals the actual website name after
decryption. Analysis of payloads using Chrome DevTools, especially during user interactions (registration,
login, and credential management), consistently confirms that sensitive information—including master
passwords, derived keys, and website credentials—is never sent to the server in plain text. After validating
data integrity using Chrome DevTools, the web application’s security was further assessed using OWASP ZAP
version 2.16.1. OWASP ZAP was chosen based on comparative testing across 20 tools, where it ranked second
but scored equally with the first and third positions. The selection was also influenced by familiarity with
OWASP ZAP [19]. Automated scanning targeted the local frontend URL at http://localhost:5173. The primary
goal was to evaluate server security settings and the application’s HTTP responses. While automated scans
with ZAP cannot cover every aspect of the app [20], they offer valuable insights into the overall security
posture.
Table 4. ZAP Test Results

Type Severity Count
CSP Header Not Set Medium 2
Hidden File Found Medium 4
Missing Anti-clickjacking Header Medium 2
X-Content-Type-Options Header Missing Low 35
Information Disclosure in URL Info 1
Information Disclosure - Comments Info 6
Modern Web Application Info 2
Tech Detected - Uvicorn Info 1
Tech Detected - Vite Info 1

The scan found no high-risk vulnerabilities. Several medium and low-risk issues were detected, which do not
undermine the effectiveness of ZKE for server-side data protection, but should be addressed to further
strengthen overall web application security.

4.2 Discussion

The primary findings at the ‘Medium’ risk level relate to the absence of recommended HTTP security
headers, such as Content Security Policy (CSP) and anti-clickjacking headers, as well as the identification of
hidden files. Without a CSP, the application is more susceptible to Cross-Site Scripting (XSS) attacks. The
presence of four hidden files indicates that there are resources accessible to the public that should remain
private. The missing anti-clickjacking header allows the application to be embedded within frames on external
sites, creating an opportunity for clickjacking attacks, which can result in users unknowingly performing
actions. At the ‘Low’ risk level, the lack of the X-Content-Type-Options header was observed. This omission
permits MIME sniffing, where the browser attempts to determine the content type automatically rather than
relying on the server’s declaration. Such behavior may expose the application to security threats if non-
executable content is interpreted as executable scripts, potentially enabling XSS attacks, though the risk
remains minor. Additional findings categorized as ‘Informational’ include the detection of technologies in use
(such as Uvicorn and Vite) and several minor disclosures. Overall, the results indicate the absence of critical
vulnerabilities on the frontend layer. However, several aspects of standard web security can be improved,
particularly by enforcing stricter server configurations and implementing appropriate security headers. These
findings do not affect the assessment of the core security mechanism, Zero-Knowledge Encryption (ZKE).
Subsequent testing used a blackbox approach to reflect user interactions and actions within the password
manager application.

Table 5. Blackbox Testing Results

No Function Condition Expected Outcome Test Result Conclusion
1 Registration Username available Redirect to master Redirected to master Match
password setup form password setup form

Username Alert indicating Alert indicating Match
unavailable username is taken username is taken

2 Login Valid username and Access to vault Access to vault Match
password
Invalid username or Alert indicating Alert indicating invalid Match
password invalid credentials credentials

3 Add website Enter website name Website data saved Website data saved Match
and credentials successfully successfully
Use password Password generated Password generated Match

generation feature

Copyright © 2025 IJSECS
642 International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

l R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

4 Update website Modify website Updated data saved Updated data saved Match
data credentials successfully successfully
5 Copy website Copy password to Password copied Password copied Match
password Windows clipboard
6 Delete data Remove website Website entry Website entry deleted Match
entry deleted
Remove website Website credentials Website credentials Match
credentials deleted deleted

Results from blackbox testing demonstrate that all essential features and actions performed as expected. The
application’s functionality aligns with its intended design and user requirements [21].

5. Conclusion

The project succeeded in developing and evaluating a web-based password manager utilizing Zero
Knowledge Encryption (ZKE). Core cryptographic operations—including key derivation from the user’s master
password via Argon2id (with parameters balanced for client security and performance) and credential data
encryption/decryption using AES-GCM—were executed entirely on the client side. The adopted client-server
structure, employing React for the frontend and FastAPI for the backend, strictly separates sensitive data
management on the client from encrypted data storage (salt, verifier, credential blob) on the server. As a
result, the server does not access the master password or user credentials in plaintext form. Network payload
analysis with Chrome DevTools confirmed that no sensitive information is transmitted without protection,
validating the ZKE implementation. Additional measures, such as clearing cryptographic keys from client
memory (clearKeys()), further reinforce security. A fundamental consequence of ZKE is the absence of account
recovery options if the master password is forgotten. This trade-off is essential to maximize server-side security
and user privacy. Security scanning with OWASP ZAP did not reveal critical vulnerabilities; however, several
areas warrant improvement, such as the adoption of HTTP security headers (CSP, X-Content-Type-Options,
anti-clickjacking), which would strengthen overall application resilience. The results demonstrate a practical
and validated implementation of ZKE for a web-based password manager, offering a substantial increase in
protection against server-side threats. Future research is encouraged to focus on designing and assessing
account recovery mechanisms that align with ZKE principles, for example, approaches based on Shamir's
Secret Sharing.

References

[1] Mannuela, I., Putri, J., & Anggreainy, M. S. (2021, October). Level of password vulnerability. In 2021
1st International Conference on Computer Science and Artificial Intelligence (ICCSAI) (Vol. 1, pp. 351-
354). IEEE. https://doi.org/10.1109/ICCSAI53272.2021.9609778

[2] Sudiarto, W., Dhian, 1., Ratri, E. K., & Susilo, H. (2017, April). Implementasi two factor authentication
dan protokol zero knowledge proof pada sistem login. JUTISI, 3(1), 127-136.
https://doi.org/10.28932/jutisi.v3i1.579

[3] Pearman, S., Zhang, S. A., Bauer, L., Christin, N., & Cranor, L. F. (2019). Why people (don't) use
password managers effectively. In Fifteenth symposium on usable privacy and security (SOUPS
2019) (pp. 319-338).

[4] Alkaldi, N. A. (2019). Adopting password manager applications among smartphone users (PhD thesis,
University of Glasgow). https://doi.org/10.5525/gla.thesis.74359

[5] Alodhyani, F., Theodorakopoulos, G., & Reinecke, P. (2020, November). Password managers—it’s all
about trust and transparency. Future Internet, 12(11), 1-50. https://doi.org/10.3390/fi12110189

[6] Oladipupo, R. O., & Olajide, A. O. (2019). An enhanced web security for cloud-based password
management. [Online]. Available: www.aujst.com

Copyright © 2025 IJSECS
643 International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

https://doi.org/10.1109/ICCSAI53272.2021.9609778
https://doi.org/10.28932/jutisi.v3i1.579
https://doi.org/10.5525/gla.thesis.74359
https://doi.org/10.3390/fi12110189
http://www.aujst.com/

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

R. Krisviarno Darmawan, et al.
Implementation of Zero-Knowledge Encryption in a Web-Based Password Manager.

Aditama, W. Y., Hikmah, I. R., & Priambodo, D. F. (2023, August). Analisis komparatif keamanan aplikasi
pengelola kata sandi berbayar Lastpass, 1Password, dan Keeper berdasarkan ISO/IEC 25010. Jurnal
Teknologi Informasi dan Ilmu Komputer, 1(4), 857-864. https://doi.org/10.25126/jtiik.2023106544

Oesch, S., & Ruoti, S. (2020, August). That was then, this is now: A security evaluation of password
generation, storage, and autofill in browser-based password managers. In Proceedings of the 29th
USENIX Conference on Security Symposium (pp. 2165-2182).

Pargaonkar, S. (2023, August). A comprehensive research analysis of software development life cycle
(SDLC) agile & waterfall model advantages, disadvantages, and application suitability in software quality
engineering. International Journal of Scientific and Research Publications, 13(8), 120-124.
https://doi.org/10.29322/ijsrp.13.08.2023.p14015

Chatzoglou, E., Kampourakis, V., Tsiatsikas, Z., Karopoulos, G., & Kambourakis, G. (2024, June). Keep
your memory dump shut: Unveiling data leaks in password managers. In IFIP International Conference
on ICT Systems Security and Privacy Protection (pp. 61-75). Cham: Springer Nature Switzerland.
https://doi.org/10.48550/arXiv.2404.00423

Khande, R., Ramaswami, S., Naidu, C., & Patel, N. (2021). An effective mechanism for securing and
managing password using AES-256 encryption & PBKDF2. Technology (IJEET), 1X5), 1-7.
https://doi.org/10.34218/ijeet.12.5.2021.001

Garcia, S. P. L., Abraham, A. S., Kepic, K., & Cankaya, E. C. (2023). A Comparative Analysis of Web
Application Vulnerability Tools. Journal of Information Systems Applied Research, 16(2). [Online].
Available: https://conisar.org

Laipaka, R. (2022). Penerapan JWT untuk Authentication dan Authorization pada Laravel 9
menggunakan Thunder Client. In Seminar Nasional Corisindo.

Chuah, C. W., Harun, N. Z.,, & Hamid, I. R. A. (2024). Key derivation function: key-hash based
computational extractor and stream based pseudorandom expander. PeerJ Computer Science, 10,
€2249. https://doi.org/10.7717/peerj-cs.2249

Susanti, A., Prasetiya, B. A., Pangesti, O. D., Suryawati, L. D., & Saputro, I. A. (2024, December).
Perbandingan kinerja dan keamanan algoritma kriptografi modern AES-GCM dengan CHACHA20-
POLY1305. Infomatek, 26(2), 253-264. https://doi.org/10.23969/infomatek.v26i2.19255

R. S. (2020, October). Navigating client-side storage in modern web applications: Mechanisms, best
practices, and future directions. International Journal For Multidisciplinary Research, 2(5).
https://doi.org/10.36948/ijfmr.2020.v02i05.12096

Tippe, P., & Berner, M. P. (2025, August). Evaluating Argon2 Adoption and Effectiveness in Real-World
Software. In International Conference on Availability, Reliability and Security (pp. 25-46). Cham:
Springer Nature Switzerland. https://doi.org/10.48550/arXiv.2504.17121

Fedorchenko, V., Yeroshenko, O., Shmatko, O., Kolomiitsev, O., & Omarov, M. (2024, November).
Password hashing methods and algorithms on the .NET platform. Advanced Information Systems, &4),
82-92. https://doi.org/10.20998/2522-9052.2024.4.11

Belay, T. E., Gupta, S., & Burisa, E. (2025, April). Perform scanning and comparison of open source web
application testing tools: Using strategic holistic approach. Journal of Posthumanism, X2), 1377-1402.
https://doi.org/10.63332/joph.v5i2.512

Maniraj, S. P., Ranganathan, C. S., & Sekar, S. (2024). Securing web applications with owasp zap for
comprehensive security testing. International Journal of Advances in Signal and Image Sciences, 142),
12-23. https://doi.org/10.29284/ijasis.10.2.2024.12-23

Putri, M., Ginting, A., & Lubis, A. S. (2024). Pengujian aplikasi berbasis web data Ska menggunakan
metode black box testing. Februari, A1), 41-48. https://doi.org/10.55537/cosmic.

Copyright © 2025 IJSECS
International Journal Software Engineering and Computer Science (IJSECS), 5 (2) 2025, 633-644

https://doi.org/10.25126/jtiik.2023106544
https://doi.org/10.29322/ijsrp.13.08.2023.p14015
https://doi.org/10.48550/arXiv.2404.00423
https://doi.org/10.34218/ijeet.12.5.2021.001
https://conisar.org/
https://doi.org/10.7717/peerj-cs.2249
https://doi.org/10.23969/infomatek.v26i2.19255
https://doi.org/10.36948/ijfmr.2020.v02i05.12096
https://doi.org/10.48550/arXiv.2504.17121
https://doi.org/10.20998/2522-9052.2024.4.11
https://doi.org/10.63332/joph.v5i2.512
https://doi.org/10.29284/ijasis.10.2.2024.12-23
https://doi.org/10.55537/cosmic

