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Abstract: East Ogan Komering Ulu (OKU) is distinguished by its cultural heritage, which encompasses 

historical artifacts such as traditional houses, crafts, and ceremonial dances. Among the most significant 

cultural assets are relics inscribed with ancient scripts, including Pallawa and Ulu, which offer valuable 
insight into the region’s historical literacy. The present study addresses the segmentation of OKU Timur 

script images through the Bounding Box method. This approach was selected based on its practicality and 

efficiency, particularly in the context of datasets where script characters exhibit straightforward forms and 
the overall data volume remains manageable. The segmentation process utilizes Python within the Google 

Colaboratory platform, ensuring accessible and reproducible workflows. Accurate segmentation is essential 
to support ongoing digitization and preservation of cultural scripts. The methodology involves gathering 

data from local artifacts, converting images to binary format, and isolating characters using Bounding Boxes. 
The results demonstrate that the method effectively separates individual script characters, laying the 

groundwork for dataset development and subsequent image classification tasks. 

 

Keywords: OKU Timur Script; Bounding Box; Image Segmentation; Python; Google Colaboratory; 

Dataset. 
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1.  Introduction 

East Ogan Komering Ulu (OKU) Timur is recognized for its extensive cultural heritage, rooted in both 

tangible artifacts and intangible traditions. The region’s legacy can be observed in its traditional dwellings, 
intricate craftwork, and ritual dances, all of which have persisted through successive generations. Such 

continuity is not merely a reflection of cultural pride, but also a testament to the community’s commitment to 

maintaining links with its historical roots. Among the most valuable remnants of the past are artifacts inscribed 
with scripts such as Pallawa and Ulu. These objects, whether carved in stone, etched in wood, or painted on 

cloth, bear witness to the development of literacy and record-keeping practices that once flourished in the 
area. 

The presence of these scripts points to a sophisticated understanding of language as a visual system. 

Writing, in this context, is more than a means of documentation; it is an instrument for expressing collective 
memory and social values. Through the act of inscribing language onto diverse materials, earlier generations 

left behind a record that extends beyond oral tradition [1]. The script native to OKU Timur, originating from 
South Sumatra, stands out for its distinctive visual style and its role in shaping local identity. The preservation 

of such writing systems is not only about safeguarding physical artifacts; it is equally about ensuring that the 
knowledge and cultural significance embedded within them are not lost to time. In recent years, the rapid 

advancement of digital technology has opened new avenues for cultural preservation. The application of 

computational methods to the study of ancient scripts offers an opportunity to document, analyze, and 
disseminate information in ways that were previously unattainable. Among these methods, image 

segmentation has emerged as a practical solution for isolating and studying individual characters from historical 
manuscripts and inscriptions. Segmentation, defined as the process of distinguishing objects from their 

backgrounds, is an essential step in preparing visual data for further analysis or archival purposes [2]. 

The research described here adopts the Bounding Box method to segment characters in images of the 
OKU Timur script. This approach was selected after careful consideration of its efficiency and suitability for 

scripts with relatively uncomplicated forms. The method enables rapid annotation, which is especially valuable 
when dealing with large datasets or when resources are limited. In addition, the straightforward nature of 

bounding box annotation makes it accessible to researchers and practitioners who may not have extensive 

experience with more complex segmentation techniques. By framing each character within a rectangular 
boundary, the method facilitates the precise localization and separation of script elements from surrounding 

visual noise. The significance of this approach extends beyond technical convenience. By enabling the 
systematic segmentation of characters, the research lays the groundwork for the creation of comprehensive 

digital archives. Such resources can support a range of activities, from linguistic analysis and script 
revitalization to educational initiatives aimed at raising awareness of local heritage. Moreover, the digitization 

of traditional scripts using accessible computational tools helps bridge the gap between historical legacy and 

contemporary scholarship, ensuring that cultural knowledge remains available to future generations. The 
segmentation of OKU Timur script characters through the Bounding Box method represents a strategic step 

toward the digital preservation of regional heritage. The outcomes of this work are expected to facilitate 
further research and support ongoing efforts to document and sustain Indonesia’s diverse script traditions. 

The integration of technological methods with heritage preservation reflects an evolving approach to cultural 

stewardship—one that values both innovation and respect for the past. 
 

2.  Related Work 

Mathew et al. (2015) and Memon et al. (2020) emphasize the urgency of documenting and digitizing 

indigenous scripts in response to the ongoing decline in linguistic diversity [8][9]. Their work underscores the 

foundational role of manual transcription and photographic documentation in cultural preservation, while also 
highlighting the inherent limitations of these approaches—particularly in terms of scalability and accessibility. 

As the volume and complexity of script artifacts grow, such traditional methods struggle to keep pace with the 
demands of comprehensive preservation efforts. Memon et al. (2020) note a significant shift in the field with 

the adoption of Optical Character Recognition (OCR) systems, which have enabled more efficient processing 

of written materials [9]. However, as Kaur and Sagar (2023) point out, the bulk of OCR research and 
development has centered on scripts with well-established digital resources, such as Latin and Arabic, leaving 

many regional scripts underrepresented in technological advances [7]. This gap has prompted researchers to 
explore alternative strategies for script documentation and analysis. 

Kantorov et al. (2016) and Papadopoulos et al. (2016) introduced bounding box annotation as a practical 
tool for isolating textual elements from complex backgrounds [6][10]. Their findings show that these computer 

vision techniques can be adapted to various character recognition scenarios, including those involving scripts 

with limited prior study. When applied to regional scripts, such as Javanese and Balinese, bounding box 
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segmentation has been shown by Budiman et al. (2023) and Rasyidi et al. (2021) to enhance the accuracy of 
character classification, supporting more reliable digital archiving and analysis [3][11]. Despite these 

improvements, researchers continue to face obstacles when working with scripts characterized by irregular 
shapes, overlapping glyphs, or significant degradation. Sapitri et al. (2023) highlight the potential of deep 

learning models, particularly Convolutional Neural Networks (CNNs), to address some of these challenges by 

increasing recognition robustness [12]. However, the effectiveness of such models is often constrained by the 
need for extensive annotated datasets—a resource that is rarely available for lesser-known scripts. 

Darma (2018, 2019) draws attention to the lack of tailored digital segmentation and annotation 
techniques for local scripts, arguing that the adaptation of bounding box methods can help bridge this gap by 

providing accessible and accurate solutions [4][5]. Through the integration of established computer vision 
strategies, research in this area is positioned to make meaningful contributions to the preservation and 

revitalization of Indonesia’s literary heritage. While significant progress has been made in applying 

computational approaches to script analysis, the literature continues to reveal a shortage of scalable, accessible 
solutions for the digital preservation of regional scripts. The adoption of bounding box techniques—alongside 

ongoing innovation in machine learning and data augmentation—offers a promising direction for future work 
in this field. 

 

3.  Research Method 

In this study on the segmentation of OKU Timur script images, the Bounding Box method is employed. The 

Bounding Box technique is used to mark objects that have been grouped during the object segmentation 
process. Marked objects are highlighted with green boxes. The methodological steps used in this research are 

as follows: 

1) Data Collection 
2) Line Segmentation 

3) Character Segmentation using Bounding Box 
4) Image Saving 

 

 
Figure 1. Flow Chart 

 

The methodological steps for image segmentation are carried out as follows: 
1) Data Collection 

The initial stage of this research involves collecting data from script artifacts found in the OKU Timur region. 
These artifacts were processed by researchers involved in the ISRG research group for the study titled 

"Development of a Mobile-Based Transliteration Application for the Ulu Script Variant of OKU Timur." The 

OKU Timur script was then compiled into a questionnaire to be processed in the Image Preprocessing 
stage, which was conducted by another ISRG team. There were 102 respondents, with each questionnaire 
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containing 225 OKU Timur script characters. Below is an example of a questionnaire page completed by a 
respondent. 

 
Figure 2. Example of the OKU Timur Script Questionnaire 

2) Segmentation 

Segmentation is a crucial part of image analysis, as this procedure involves analyzing the desired image for 
subsequent purposes, such as pattern recognition [13]. Segmentation allows each object in the image to 

be taken separately, enabling them to be used as input for other processes [14]. Segmentation is used in 

human face recognition to distinguish the human face from the background or other body parts, resulting 
in a face image that can be recognized. It is also used in object type recognition to differentiate each object 

from the background, ensuring that the background is not processed during the recognition process. 
Similarly, in letter recognition within text, segmentation is necessary to identify the letters to be recognized. 

 
3) Line Segmentation 

After the Image Preprocessing stage, the resulting binary image facilitates the identification and extraction 

of text lines, as each text line can now be recognized as a cluster of black pixels isolated against a white 
background. By applying techniques such as connected component analysis or horizontal line detection, 

text lines can be effectively extracted for further processing. The purpose of line segmentation is to 
determine the number of character lines in the image and to identify the areas of these lines. This is done 

to exclude unnecessary components from the subsequent processes [15]. 

 
4) Character Segmentation (Bounding Box) 

Once the text lines have been successfully segmented, the next step is to separate each character within 
those lines. This process typically begins with the detection of spaces between words, which appear as 

wider horizontal gaps between clusters of black pixels. Image processing algorithms then place bounding 
boxes around each detected character. A bounding box is a rectangle that surrounds each character, 

identifying the top, bottom, left, and right boundary coordinates of the word. With the use of bounding 

boxes, each character can be extracted as a separate entity. The following bounding box process marks 
line blocks with boxes. These markers allow you to see individual objects. The following explains the dilation 

processing test stage: 
a) The bounding box process marks line blocks in the dilated image. 

b) Line blocks become individual objects in the dilated image. 

 
The bounding process separates one object from another and computes features to identify each object. 

A bounding box is usually a rectangle determined by the coordinates of the top-left corner (x_min, y_min) 
and the bottom-right corner (x_max, y_max), or by center, width, and height. In the dilated image, the 

bounding process is used to separate line block objects. This process performs object segmentation to 

separate one object from another based on pixel connectivity in the dilated image. Subsequently, the 
bounding process computes object features used to label objects that are separated from the line block. 

Objects are marked with a red box using the computed height and width dimensions from the labeling 
process [16]. 

 
5) Dilation 

Dilation is a process aimed at thickening the white pixels of the object to be detected, making it easier for 

the computer to detect the object [17]. Dilation is one of the morphological image processing methods 
related to the shape structure of objects. Specifically, dilation is the process of adding pixels to the 

boundaries of objects in a digital image. In other words, dilation adds pixels to the object’s boundaries, so 
after the dilation operation, the size of the object in the image increases [18]. 
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6) Morphological Operations 

Morphological image processing refers to important techniques in image processing that alter the shape 
and structure of objects in the original image [19]. To make shapes (structures) more recognizable, 

morphological operations are used. Morphological image processing is usually performed by applying a 

structuring element to the image in a manner similar to convolution. The structuring element (SE) is a 
critical component for morphological operations [20]. 

 
7) Python 

Python is a high-level programming language that can execute a variety of instructions directly 
(interpreted), using object-oriented programming and dynamic semantics to provide readable syntax [21]. 

Python offers many libraries such as OpenCV, Pillow, NumPy, and Matplotlib, which facilitate image 

segmentation processes, including object detection and annotation using bounding boxes. 
 

8) Google Colaboratory 
Google Colaboratory, also known as Google Colab, is a free tool for research purposes that utilizes cloud 

storage. Google Colaboratory functions similarly to Jupyter Notebook, but it is accessible online and free of 

charge [22]. Google Colaboratory allows users to run code with GPU resources without requiring installation 
on a local computer. This greatly accelerates the processing of large datasets. Additionally, its direct 

integration with Google Drive simplifies file management, such as datasets and annotated images during 
the segmentation process. 

 

4.  Result and Discussion 

4.1 Results 

4.1.1 Data Collection 
The initial stage of this research involved collecting data from script artifacts located in the OKU Timur 

region. The collected data was then processed by researchers who are part of the ISRG research team under 

the research title "Development of a Mobile-Based Transliteration Application for Ulu Script Variants in OKU 
Timur." In this study, questionnaires were carefully designed to cover various character variations of the OKU 

Timur script. Each questionnaire consists of 225 OKU Timur script characters, which were then distributed to 
respondents for completion. Subsequently, the collected OKU Timur script characters were processed and 

converted into questionnaires. These questionnaires were later used for the Image Preprocessing stage. Below 
is an example of a questionnaire page that has been completed by respondents and processed at the Image 

Preprocessing stage. 

 
Figure 3. Questionnaire Page 
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4.1.2 Line Segmentation 
1) Displaying OKU Timur Script Images 

 

 
Figure 4. Code for Displaying Images 

 

The images processed in this step were obtained from the previous stage, namely the Image Preprocessing 
stage, and uploaded to Google Drive for segmentation processing. The code above is designed to process and 

display images stored in Google Drive by first verifying the source of the file. The initial step in this code is to 
check whether the image file is located in Google Drive by searching for the string '/content/drive/' in the file 

path. If the image is not from that location, the code will halt the process and provide an error message. Once 
verification is successful, the image is read using OpenCV, which by default reads images in the BGR (Blue-

Green-Red) color format. To ensure compatibility with Matplotlib, the image is then converted to the RGB 

(Red-Green-Blue) color format, which is more commonly used for visualization. The next step in this code is 
to adjust the image's contrast and brightness. These adjustments are made using the variable alpha for 

contrast and beta for brightness. The alpha value controls the contrast level, where a value of 1.0 means the 
contrast remains unchanged, while higher values will increase the image's contrast. Meanwhile, beta controls 

the brightness, with higher values making the image appear brighter. These adjustments are applied to the 

image using the cv2.convertScaleAbs() function. After the contrast and brightness have been adjusted, the 
image is displayed using Matplotlib with the axes hidden to focus on the image. Thus, this code allows users 

to read, verify, adjust, and display images from Google Drive with easy control over contrast and brightness. 
 

2) Dilation for Line Segmentation 
 

 
Figure 5. Code for Dilation in Line Segmentation 

 

After successfully displaying the image, it is processed in the dilation stage. This code is used to perform 

dilation on a binary image, which is a technique in image processing to expand the area of bright objects in 
the image. First, a kernel or structuring element with a size of 30x70 pixels is created using np.ones, where 

each element has a value of 1. This kernel acts as a "stamp" used in the dilation process. The cv2.dilate 
function is then applied to the binary image (binary) with the kernel, and the dilation process is performed 

once (as specified by iterations = 1). This dilation causes the bright objects in the image to become thicker or 

larger, which is useful for connecting separated elements, such as text lines in document segmentation. 
 

3) Finding Contours in the Image 
 

 
Figure 6. Code for Finding Contours 
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The above code is used to find and sort contours in an image that has undergone dilation. First, the 
cv2.findContours function is used to detect contours in the segmented image (which has previously undergone 

dilation). This function returns two values: contours, which contains a list of all detected contours, and 
hierarchy, which contains information about the hierarchical relationship between contours. The parameter 

cv2.RETR_EXTERNAL ensures that only the outermost contours are retrieved, while 

cv2.CHAIN_APPROX_NONE stores all points in the contour without reduction. Once the contours are found, 
this code sorts the contours based on their vertical position (the y coordinate) using the sorted function. This 

sorting process is important in applications such as text line segmentation, where the order of contours 
determines the order of the lines. The function cv2.boundingRect(ctr) is used to obtain the coordinates and 

size of the bounding box for each contour, and key = lambda ctr: cv2.boundingRect(ctr) [1], ensures that 
sorting is done based on the y value, which is the vertical position of the contour in the image. 

 

4) Saving and Displaying the Result of Line Segmentation 
 

 
Figure 7. Code for Saving and Displaying the Result Image 

 

This code functions to draw bounding boxes around each previously sorted contour and then save and display 
the result image. First, the code iterates through each contour that has been sorted by its vertical position 

(sorted_contours_lines). For each contour, the top-left corner coordinates (x, y), width (w), and height (h) of 

the bounding box are calculated using cv2.boundingRect(ctr). The bounding box is then drawn on the original 
image (img2) using cv2.rectangle, with the box color specified by the RGB value (40, 100, 250) and a line 

thickness of 2 pixels. After all bounding boxes are drawn, the resulting image is saved to a file named 
segmentasi_baris.jpg using cv2.imwrite. If the saving process fails, the program will output an error message. 

Finally, the image with the bounding boxes is displayed using Matplotlib (plt.imshow), and the image is 
converted from the BGR color format (used by OpenCV) to RGB to ensure correct display. Below is the result 

image from the line segmentation stage.  

 

 
Figure 8. Result Image of Line Segmentation Stage 

 

4.1.3 Character Segmentation (Bounding Box) 

1) Dilation for Character Segmentation 
 

 
Figure 9. Code for Dilation in Character Segmentation 
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After the line segmentation stage has been successfully processed, the next step is dilation for the script 

characters in the image. This code performs dilation on the image to expand the character areas. First, a 
kernel with a size of 8x8 pixels is created using np.ones, where each kernel element has a value of 1. This 

kernel is used for the dilation process, where the cv2.dilate function will enlarge the white areas (bright objects) 

in the binary image (binary). Dilation is performed once, as specified by iterations = 1. The result of this 
dilation is an image with thicker characters and more prominent white areas, which can help connect separated 

parts of characters or improve the visibility of characters in the image. 
 

2) Function to Merge Two Bounding Boxes 
 

 
Figure 10. Code for Merging Two Bounding Boxes 

 
This code defines a function called merge_boxes that is used to merge two bounding boxes into a larger box 

that encompasses both original boxes. This function takes two bounding boxes as input, each represented by 
a tuple (x, y, w, h), where x and y are the top-left corner coordinates, and w and h are the width and height 

of the box. To merge two bounding boxes, the function first determines the top-left corner coordinates of the 

merged box by taking the smallest x and y values from both boxes. Next, it determines the bottom-right corner 
coordinates of the merged box by taking the largest values of x + w and y + h from both boxes. Finally, the 

function returns the merged bounding box in the form (x1, y1, width, height), where x1 and y1 are the top-
left corner coordinates, and width and height are the width and height of the merged box. 

 
4.1.3 Morphological Operation Code 

 

 
Figure 11. Morphological Operation Code 

 

This code uses morphological operations to merge small contours with larger ones in a binary image. First, a 
square kernel with a size of 8x8 pixels is created using cv2.getStructuringElement. This kernel is used in the 

morphological operation with the cv2.MORPH_CLOSE method, which merges adjacent white areas (bright 
objects) by closing small gaps between them. This process is repeated three times (iterations=3) to ensure 

that small contours near larger contours will be merged, resulting in larger contours. After the morphological 

operation is complete, the contours present in the modified image (morphed) are found using 
cv2.findContours. The cv2.RETR_EXTERNAL function ensures that only the outer contours are found, and 

cv2.CHAIN_APPROX_SIMPLE is used to simplify the contour shapes by reducing the number of points forming 
the contour. The result is a list of larger contours that are combinations of previously separated small contours. 

 

4.1.4 Filtering Contours in the Image 
 

 
Figure 12. Code for Filtering Contours in the Image 

 
This code functions to filter out small contours in the image, so that only larger contours are retained. First, 

the minimum contour area threshold is set with min_contour_area = 2, which means only contours with an 

area greater than 2 pixels will be retained. Then, contour filtering is performed by creating a new list, 
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filtered_contours, which only contains contours with an area greater than the minimum value. This filtering 
uses list comprehension, where cv2.contourArea(cnt) is used to calculate the area of each contour. After the 

smaller contours are removed, the bounding boxes for each remaining contour are calculated and stored in 
the bounding_boxes list. These bounding boxes are calculated using cv2.boundingRect(contour), which 

provides the top-left corner coordinates, width, and height of the bounding box surrounding each filtered 

contour. As a result, this code prepares the data for the next stage, where only relevant and sufficiently large 
contours will be further processed. 

 
4.1.5 Determining the Distance for Merging Bounding Boxes and Adding Margin 

 

 
Figure 13. Code for Determining Distance and Margin 

 

This code is used to merge bounding boxes that are close to each other into a larger box. First, the maximum 
allowable distance for merging bounding boxes is set with max_distance = 50. The code then processes each 

bounding box one by one using a while loop. For each bounding box, the code searches for other bounding 

boxes whose distance from the current bounding box does not exceed max_distance either horizontally or 
vertically. All bounding boxes that meet this distance criterion are collected in the to_merge list, and merged 

bounding boxes are removed from the bounding_boxes list. If there is more than one bounding box in the 
to_merge list, they are merged into a large bounding box using the merge_boxes function, and the result is 

stored in merged_boxes. If there is only one bounding box in to_merge, it is directly added to merged_boxes. 
Next, the code sets an additional margin with a value of margin = 15, which can be used to provide extra 

space around the merged bounding boxes. This ensures that the merged box covers a sufficiently wide area 

around it. 
 

4.1.6 Saving and Displaying the Result Image 
 

 
Figure 14. Code for Saving and Displaying the Result Image 

 

This code is used to draw the merged bounding boxes on the original image, then save and display the results. 
First, the code draws each bounding box in the merged_boxes list on the original image (img). For each 

bounding box, the coordinates and size (x, y, w, h) are taken, and a bounding box is drawn around it by 
adding a margin on each side. This margin is added with a value of margin = 15 to ensure that the bounding 

box covers the area around the merged bounding boxes. After all bounding boxes are drawn, the image with 

the bounding boxes is saved to a file named segmentasi_karakter.jpg using cv2.imwrite. If the image saving 
fails, the code will output an error message. Finally, the detected image with bounding boxes is displayed 

using Matplotlib. The displayed image is converted from the BGR color format to RGB to ensure correct display, 
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and is given the title "OKU Timur Script Character Detection Result with Bounding Box" to provide context to 
the visual result. Below is the result image from the character segmentation stage. 

 

 
Figure 15. Result Image of Character Segmentation Stage 

 

After the image is successfully saved, the next steps are cropping and grouping (clustering), and then the 
created dataset will be trained using a deep learning model so that it can later be used for image classification. 

 
4.2 Discussion 

Budiman et al. (2023) emphasize the importance of diverse and comprehensive data in building a robust 

handwritten character recognition system, especially for local scripts such as those found in OKU Timur. In 
this study, data collection was carried out meticulously through the distribution of questionnaires containing 

various character variants, ensuring that the resulting dataset truly represents the diversity of existing scripts 
[3]. Adipranata et al. (2014) highlight that the use of morphological techniques like dilation is very helpful in 

the image segmentation process, particularly for clarifying and connecting separated parts of characters due 
to scanning artifacts or irregular handwriting. In this research, dilation was applied to thicken the script 

components, making it easier to detect lines and separate characters [2]. 

Mathew et al. (2015) state that sorting contours based on their vertical positions is highly effective for 
extracting lines and characters from handwritten images. This approach was also implemented in the present 

study, where detected contours were sorted to ensure that each character could be isolated properly. The use 
of bounding boxes to segment each character further simplifies subsequent processes, especially when 

preparing data for machine learning models [8]. Hamanrora et al. (2024) also demonstrate that the bounding 

box technique is highly beneficial for segmenting Komering script, which shares similar characteristics with the 
OKU Timur script. With this approach, each character is clearly separated, making the labeling and training 

processes for the model much more efficient [19]. Memon et al. (2020) add that filtering out small, irrelevant 
contours is crucial to prevent the character recognition system from being disrupted by noise or artifacts from 

the scanned images. In this study, only contours above a certain size threshold were processed further, 
ensuring that the quality of the data used for model training remained high [9]. Sapitri et al. (2023) underline 

that the quality of segmented data significantly affects the performance of deep learning models. Therefore, 

attention to detail in every stage of segmentation and preprocessing is essential to ensure that the model can 
recognize characters with high accuracy [12]. This research combines scientifically proven methods and adapts 

them to the unique characteristics of the local script. From comprehensive data collection, careful 
segmentation, to well-prepared datasets for deep learning, every process was conducted systematically and 

thoughtfully. This forms a strong foundation for the future development of regional script recognition 

technology. 
 

5.  Conclusion and Recommendations 

Based on the results of this study, a total of 1,020 images were processed. These images were obtained 

from questionnaires that had been completed and then scanned using a scanner. Subsequently, the images 

underwent a preprocessing stage aimed at improving their quality before entering the segmentation phase. 
This research utilized the Bounding Box method to process images of the OKU Timur script that had passed 

through the preprocessing stage. This method effectively helped to separate the characters on the 
respondents’ answer sheets. By using the Bounding Box method, the segmented character images could be 

easily processed in the following stages, namely cropping and clustering. A suggestion for improving the 

segmentation process is to develop or add code that enables the input of multiple images at once. Currently, 
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images must be input into the program one by one, which can be very time-consuming if there are many 
images to process. 
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