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Abstract: East Ogan Komering Ulu (OKU) is distinguished by its cultural heritage, which encompasses
historical artifacts such as traditional houses, crafts, and ceremonial dances. Among the most significant
cultural assets are relics inscribed with ancient scripts, including Pallawa and Ulu, which offer valuable
insight into the region’s historical literacy. The present study addresses the segmentation of OKU Timur
script images through the Bounding Box method. This approach was selected based on its practicality and
efficiency, particularly in the context of datasets where script characters exhibit straightforward forms and
the overall data volume remains manageable. The segmentation process utilizes Python within the Google
Colaboratory platform, ensuring accessible and reproducible workflows. Accurate segmentation is essential
to support ongoing digitization and preservation of cultural scripts. The methodology involves gathering
data from local artifacts, converting images to binary format, and isolating characters using Bounding Boxes.
The results demonstrate that the method effectively separates individual script characters, laying the
groundwork for dataset development and subsequent image classification tasks.

Keywords: OKU Timur Script; Bounding Box; Image Segmentation; Python; Google Colaboratory;
Dataset.
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1. Introduction

East Ogan Komering Ulu (OKU) Timur is recognized for its extensive cultural heritage, rooted in both
tangible artifacts and intangible traditions. The region’s legacy can be observed in its traditional dwellings,
intricate craftwork, and ritual dances, all of which have persisted through successive generations. Such
continuity is not merely a reflection of cultural pride, but also a testament to the community’s commitment to
maintaining links with its historical roots. Among the most valuable remnants of the past are artifacts inscribed
with scripts such as Pallawa and Ulu. These objects, whether carved in stone, etched in wood, or painted on
cloth, bear witness to the development of literacy and record-keeping practices that once flourished in the
area.

The presence of these scripts points to a sophisticated understanding of language as a visual system.
Writing, in this context, is more than a means of documentation; it is an instrument for expressing collective
memory and social values. Through the act of inscribing language onto diverse materials, earlier generations
left behind a record that extends beyond oral tradition [1]. The script native to OKU Timur, originating from
South Sumatra, stands out for its distinctive visual style and its role in shaping local identity. The preservation
of such writing systems is not only about safeguarding physical artifacts; it is equally about ensuring that the
knowledge and cultural significance embedded within them are not lost to time. In recent years, the rapid
advancement of digital technology has opened new avenues for cultural preservation. The application of
computational methods to the study of ancient scripts offers an opportunity to document, analyze, and
disseminate information in ways that were previously unattainable. Among these methods, image
segmentation has emerged as a practical solution for isolating and studying individual characters from historical
manuscripts and inscriptions. Segmentation, defined as the process of distinguishing objects from their
backgrounds, is an essential step in preparing visual data for further analysis or archival purposes [2].

The research described here adopts the Bounding Box method to segment characters in images of the
OKU Timur script. This approach was selected after careful consideration of its efficiency and suitability for
scripts with relatively uncomplicated forms. The method enables rapid annotation, which is especially valuable
when dealing with large datasets or when resources are limited. In addition, the straightforward nature of
bounding box annotation makes it accessible to researchers and practitioners who may not have extensive
experience with more complex segmentation techniques. By framing each character within a rectangular
boundary, the method facilitates the precise localization and separation of script elements from surrounding
visual noise. The significance of this approach extends beyond technical convenience. By enabling the
systematic segmentation of characters, the research lays the groundwork for the creation of comprehensive
digital archives. Such resources can support a range of activities, from linguistic analysis and script
revitalization to educational initiatives aimed at raising awareness of local heritage. Moreover, the digitization
of traditional scripts using accessible computational tools helps bridge the gap between historical legacy and
contemporary scholarship, ensuring that cultural knowledge remains available to future generations. The
segmentation of OKU Timur script characters through the Bounding Box method represents a strategic step
toward the digital preservation of regional heritage. The outcomes of this work are expected to facilitate
further research and support ongoing efforts to document and sustain Indonesia’s diverse script traditions.
The integration of technological methods with heritage preservation reflects an evolving approach to cultural
stewardship—one that values both innovation and respect for the past.

2. Related Work

Mathew et a/. (2015) and Memon et al. (2020) emphasize the urgency of documenting and digitizing
indigenous scripts in response to the ongoing decline in linguistic diversity [8][9]. Their work underscores the
foundational role of manual transcription and photographic documentation in cultural preservation, while also
highlighting the inherent limitations of these approaches—particularly in terms of scalability and accessibility.
As the volume and complexity of script artifacts grow, such traditional methods struggle to keep pace with the
demands of comprehensive preservation efforts. Memon et a/. (2020) note a significant shift in the field with
the adoption of Optical Character Recognition (OCR) systems, which have enabled more efficient processing
of written materials [9]. However, as Kaur and Sagar (2023) point out, the bulk of OCR research and
development has centered on scripts with well-established digital resources, such as Latin and Arabic, leaving
many regional scripts underrepresented in technological advances [7]. This gap has prompted researchers to
explore alternative strategies for script documentation and analysis.

Kantorov et al. (2016) and Papadopoulos et a/. (2016) introduced bounding box annotation as a practical
tool for isolating textual elements from complex backgrounds [6][10]. Their findings show that these computer
vision techniques can be adapted to various character recognition scenarios, including those involving scripts
with limited prior study. When applied to regional scripts, such as Javanese and Balinese, bounding box
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segmentation has been shown by Budiman et a/. (2023) and Rasyidi et a/. (2021) to enhance the accuracy of
character classification, supporting more reliable digital archiving and analysis [3][11]. Despite these
improvements, researchers continue to face obstacles when working with scripts characterized by irregular
shapes, overlapping glyphs, or significant degradation. Sapitri et a/. (2023) highlight the potential of deep
learning models, particularly Convolutional Neural Networks (CNNs), to address some of these challenges by
increasing recognition robustness [12]. However, the effectiveness of such models is often constrained by the
need for extensive annotated datasets—a resource that is rarely available for lesser-known scripts.

Darma (2018, 2019) draws attention to the lack of tailored digital segmentation and annotation
techniques for local scripts, arguing that the adaptation of bounding box methods can help bridge this gap by
providing accessible and accurate solutions [4][5]. Through the integration of established computer vision
strategies, research in this area is positioned to make meaningful contributions to the preservation and
revitalization of Indonesia’s literary heritage. While significant progress has been made in applying
computational approaches to script analysis, the literature continues to reveal a shortage of scalable, accessible
solutions for the digital preservation of regional scripts. The adoption of bounding box techniques—alongside
ongoing innovation in machine learning and data augmentation—offers a promising direction for future work
in this field.

3. Research Method

In this study on the segmentation of OKU Timur script images, the Bounding Box method is employed. The
Bounding Box technique is used to mark objects that have been grouped during the object segmentation
process. Marked objects are highlighted with green boxes. The methodological steps used in this research are
as follows:

1) Data Collection

2) Line Segmentation

3) Character Segmentation using Bounding Box

4) Image Saving

Ho

Data Collection

i

Line Segmentation

1

Character Segmentation
(Bounding Box)

O

Figure 1. Flow Chart

The methodological steps for image segmentation are carried out as follows:

1) Data Collection
The initial stage of this research involves collecting data from script artifacts found in the OKU Timur region.
These artifacts were processed by researchers involved in the ISRG research group for the study titled
"Development of a Mobile-Based Transliteration Application for the Ulu Script Variant of OKU Timur." The
OKU Timur script was then compiled into a questionnaire to be processed in the Image Preprocessing
stage, which was conducted by another ISRG team. There were 102 respondents, with each questionnaire
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2)

3)

4)

5)

containing 225 OKU Timur script characters. Below is an example of a questionnaire page completed by a
respondent.

(N nn s adha o

Figure 2. Example of the OKU Timur Script Questionnaire

Segmentation

Segmentation is a crucial part of image analysis, as this procedure involves analyzing the desired image for
subsequent purposes, such as pattern recognition [13]. Segmentation allows each object in the image to
be taken separately, enabling them to be used as input for other processes [14]. Segmentation is used in
human face recognition to distinguish the human face from the background or other body parts, resulting
in a face image that can be recognized. It is also used in object type recognition to differentiate each object
from the background, ensuring that the background is not processed during the recognition process.
Similarly, in letter recognition within text, segmentation is necessary to identify the letters to be recognized.

Line Segmentation

After the Image Preprocessing stage, the resulting binary image facilitates the identification and extraction
of text lines, as each text line can now be recognized as a cluster of black pixels isolated against a white
background. By applying techniques such as connected component analysis or horizontal line detection,
text lines can be effectively extracted for further processing. The purpose of line segmentation is to
determine the number of character lines in the image and to identify the areas of these lines. This is done
to exclude unnecessary components from the subsequent processes [15].

Character Segmentation (Bounding Box)

Once the text lines have been successfully segmented, the next step is to separate each character within
those lines. This process typically begins with the detection of spaces between words, which appear as
wider horizontal gaps between clusters of black pixels. Image processing algorithms then place bounding
boxes around each detected character. A bounding box is a rectangle that surrounds each character,
identifying the top, bottom, left, and right boundary coordinates of the word. With the use of bounding
boxes, each character can be extracted as a separate entity. The following bounding box process marks
line blocks with boxes. These markers allow you to see individual objects. The following explains the dilation
processing test stage:

a) The bounding box process marks line blocks in the dilated image.

b) Line blocks become individual objects in the dilated image.

The bounding process separates one object from another and computes features to identify each object.
A bounding box is usually a rectangle determined by the coordinates of the top-left corner (x_min, y_min)
and the bottom-right corner (x_max, y_max), or by center, width, and height. In the dilated image, the
bounding process is used to separate line block objects. This process performs object segmentation to
separate one object from another based on pixel connectivity in the dilated image. Subsequently, the
bounding process computes object features used to label objects that are separated from the line block.
Objects are marked with a red box using the computed height and width dimensions from the labeling
process [16].

Dilation

Dilation is a process aimed at thickening the white pixels of the object to be detected, making it easier for
the computer to detect the object [17]. Dilation is one of the morphological image processing methods
related to the shape structure of objects. Specifically, dilation is the process of adding pixels to the
boundaries of objects in a digital image. In other words, dilation adds pixels to the object’s boundaries, so
after the dilation operation, the size of the object in the image increases [18].
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6)

7)

8)

Morphological Operations

Morphological image processing refers to important techniques in image processing that alter the shape
and structure of objects in the original image [19]. To make shapes (structures) more recognizable,
morphological operations are used. Morphological image processing is usually performed by applying a
structuring element to the image in a manner similar to convolution. The structuring element (SE) is a
critical component for morphological operations [20].

Python

Python is a high-level programming language that can execute a variety of instructions directly
(interpreted), using object-oriented programming and dynamic semantics to provide readable syntax [21].
Python offers many libraries such as OpenCV, Pillow, NumPy, and Matplotlib, which facilitate image
segmentation processes, including object detection and annotation using bounding boxes.

Google Colaboratory

Google Colaboratory, also known as Google Colab, is a free tool for research purposes that utilizes cloud
storage. Google Colaboratory functions similarly to Jupyter Notebook, but it is accessible online and free of
charge [22]. Google Colaboratory allows users to run code with GPU resources without requiring installation
on a local computer. This greatly accelerates the processing of large datasets. Additionally, its direct
integration with Google Drive simplifies file management, such as datasets and annotated images during
the segmentation process.

4. Result and Discussion

4.1 Results
4.1.1 Data Collection

The initial stage of this research involved collecting data from script artifacts located in the OKU Timur

region. The collected data was then processed by researchers who are part of the ISRG research team under
the research title "Development of a Mobile-Based Transliteration Application for Ulu Script Variants in OKU
Timur." In this study, questionnaires were carefully designed to cover various character variations of the OKU
Timur script. Each questionnaire consists of 225 OKU Timur script characters, which were then distributed to
respondents for completion. Subsequently, the collected OKU Timur script characters were processed and
converted into questionnaires. These questionnaires were later used for the Image Preprocessing stage. Below
is an example of a questionnaire page that has been completed by respondents and processed at the Image
Preprocessing stage.

am ' nnnadadh o
202027722 27722

Figure 3. Questionnaire Page
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4.1.2 Line Segmentation
1) Displaying OKU Timur Script Images

ile_path):
nt/drive/’' in file_path

# Path ke gambar

image_path = '/content/drive/MyDrive/dataset fiks - Copy/3/e2.jpg’
# Cek apakah file berasal dari Google Drive
if not is_from_drive(
raise valuetrror(" harus berasal dari Gocgle Drive!"

# Membaca dan mengonversi gambar
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# Menyesuaika
alpha = 1.2
beta = 15 # K

ras

dan kecerahan

tras (1.8 - 3.e)
cerahan (©-100

img = cv2.convertScaleAbs(img, alpha=alpha, beta=beta)

# Menampilkan gambar
plt.imshow(img)
plt.axis(‘off")
plt.show(

Figure 4. Code for Displaying Images

The images processed in this step were obtained from the previous stage, namely the Image Preprocessing
stage, and uploaded to Google Drive for segmentation processing. The code above is designed to process and
display images stored in Google Drive by first verifying the source of the file. The initial step in this code is to
check whether the image file is located in Google Drive by searching for the string '/content/drive/' in the file
path. If the image is not from that location, the code will halt the process and provide an error message. Once
verification is successful, the image is read using OpenCV, which by default reads images in the BGR (Blue-
Green-Red) color format. To ensure compatibility with Matplotlib, the image is then converted to the RGB
(Red-Green-Blue) color format, which is more commonly used for visualization. The next step in this code is
to adjust the image's contrast and brightness. These adjustments are made using the variable alpha for
contrast and beta for brightness. The alpha value controls the contrast level, where a value of 1.0 means the
contrast remains unchanged, while higher values will increase the image's contrast. Meanwhile, beta controls
the brightness, with higher values making the image appear brighter. These adjustments are applied to the
image using the cv2.convertScaleAbs() function. After the contrast and brightness have been adjusted, the
image is displayed using Matplotlib with the axes hidden to focus on the image. Thus, this code allows users
to read, verify, adjust, and display images from Google Drive with easy control over contrast and brightness.

2) Dilation for Line Segmentation

# Dilasi untuk segmentasi baris

kernel = np.ones((3e,78), np.uint8)

dilated = cv2.dilate(binary, kernel, iterations = 1)
plt.imshow(dilated, cmap='gray')

Figure 5. Code for Dilation in Line Segmentation

After successfully displaying the image, it is processed in the dilation stage. This code is used to perform
dilation on a binary image, which is a technique in image processing to expand the area of bright objects in
the image. First, a kernel or structuring element with a size of 30x70 pixels is created using np.ones, where
each element has a value of 1. This kernel acts as a "stamp" used in the dilation process. The cv2.dilate
function is then applied to the binary image (binary) with the kernel, and the dilation process is performed
once (as specified by iterations = 1). This dilation causes the bright objects in the image to become thicker or
larger, which is useful for connecting separated elements, such as text lines in document segmentation.

3) Finding Contours in the Image

# Temukan kontur dalam gambar tersegmentasi
(contours, hierarchy) = cv2.findContours(dilated.copy()}, Cv2.RETR_EXTERNAL, Cv2.CHAIN_APPROX_NCNE
sorted_contours_lines = sorted(contours, key = lambda ctr : cv2.boundingRect(ctr)[1]) # (x, v, w, h)

Figure 6. Code for Finding Contours
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The above code is used to find and sort contours in an image that has undergone dilation. First, the
cv2.findContours function is used to detect contours in the segmented image (which has previously undergone
dilation). This function returns two values: contours, which contains a list of all detected contours, and
hierarchy, which contains information about the hierarchical relationship between contours. The parameter
cv2.RETR_EXTERNAL ensures that only the outermost contours are retrieved, while
cv2.CHAIN_APPROX_NONE stores all points in the contour without reduction. Once the contours are found,
this code sorts the contours based on their vertical position (the y coordinate) using the sorted function. This
sorting process is important in applications such as text line segmentation, where the order of contours
determines the order of the lines. The function cv2.boundingRect(ctr) is used to obtain the coordinates and
size of the bounding box for each contour, and key = lambda ctr: cv2.boundingRect(ctr) [1], ensures that
sorting is done based on the y value, which is the vertical position of the contour in the image.

4) Saving and Displaying the Result of Line Segmentation

# Gambar becunding box pada kontur
for ctr in sorted_contours_lines:
X, ¥, W, h = cv2.boundingrect(ctr)
cv2.rectangle(img2, (X, V¥), (x +w, y + h), (40, 100, 258}, 2)

# Menyimpan gambar hasi: segmentasi baris

cu*put_path lines = 'segmentasi_baris. *pﬂ
if not cv2.imwrite( »utpu* path_lines, img
raise IOError(f"rFailed to save image { output_path_lines}"?

# Menampilkan gambar dengan bounding box
plt.imshow{cv2.cvtColor{img2, cv2.COLOR_BGR2RGB))
plt.title( Segmentasi Garis dengan Bounding Box')
plt.show(

Figure 7. Code for Saving and Displaying the Result Image

This code functions to draw bounding boxes around each previously sorted contour and then save and display
the result image. First, the code iterates through each contour that has been sorted by its vertical position
(sorted_contours_lines). For each contour, the top-left corner coordinates (x, y), width (w), and height (h) of
the bounding box are calculated using cv2.boundingRect(ctr). The bounding box is then drawn on the original
image (img2) using cv2.rectangle, with the box color specified by the RGB value (40, 100, 250) and a line
thickness of 2 pixels. After all bounding boxes are drawn, the resulting image is saved to a file named
segmentasi_baris.jpg using cv2.imwrite. If the saving process fails, the program will output an error message.
Finally, the image with the bounding boxes is displayed using Matplotlib (plt.imshow), and the image is
converted from the BGR color format (used by OpenCV) to RGB to ensure correct display. Below is the result
image from the line segmentation stage.

I aariAaiararany;
lIcdEarars L/"'up(& YaIviY; Al
ua/ (ya/(y A Aaararara
|u T w/- AVl ARl

Figure 8. Result Image of Line Segmentation Stage

4.1.3 Character Segmentation (Bounding Box)
1) Dilation for Character Segmentation

# Dilasi untuk karakter

kernel = np.ones((8,8), np.uints)

dilated2 = cv2.dilate(binary, kernel, iterations = 1)
plt.imshow{dilated2, cmap='gray’)

Figure 9. Code for Dilation in Character Segmentation
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After the line segmentation stage has been successfully processed, the next step is dilation for the script
characters in the image. This code performs dilation on the image to expand the character areas. First, a
kernel with a size of 8x8 pixels is created using np.ones, where each kernel element has a value of 1. This
kernel is used for the dilation process, where the cv2.dilate function will enlarge the white areas (bright objects)
in the binary image (binary). Dilation is performed once, as specified by iterations = 1. The result of this
dilation is an image with thicker characters and more prominent white areas, which can help connect separated
parts of characters or improve the visibility of characters in the image.

2) Function to Merge Two Bounding Boxes

# Fungsi untuk menggabungkan dua bounding box

def merge_ s{box1, box2)
x1 = min(box1[@], box2[@])
y1l = min(box1[1], box2[1])
x2 = max{box1[@] + box1[2], box2{e] + box2[2])

max(box1[1] + box1[23], box2[1] + box2[3])
rn (x1, y1, X2 - x1, y2 - y1)

r
cn

Figure 10. Code for Merging Two Bounding Boxes

This code defines a function called merge_boxes that is used to merge two bounding boxes into a larger box
that encompasses both original boxes. This function takes two bounding boxes as input, each represented by
a tuple (x, y, w, h), where x and y are the top-left corner coordinates, and w and h are the width and height
of the box. To merge two bounding boxes, the function first determines the top-left corner coordinates of the
merged box by taking the smallest x and y values from both boxes. Next, it determines the bottom-right corner
coordinates of the merged box by taking the largest values of x + w and y + h from both boxes. Finally, the
function returns the merged bounding box in the form (x1, y1, width, height), where x1 and y1 are the top-
left corner coordinates, and width and height are the width and height of the merged box.

4.1.3 Morphological Operation Code

# Gunakan operasi morfologi untuk menggabungkan kontur kecil dengan yang lebih besar
kernel = cv2.getStructuringelement(cv2.MORPH_RECT, (8, 8))

merphed = cv2.morphelogyex(binary, cv2.MORPH_CLOSE, kernel, iterations=3)

# Temukan kontur dalam gambar biner yang telah dimorfologi

contours, _ = cv2.findContours(morphed, cv2.RETR_EXTERMAL, Cv2.CHAIN_APPROX_SIMPLE)

Figure 11. Morphological Operation Code

This code uses morphological operations to merge small contours with larger ones in a binary image. First, a
square kernel with a size of 8x8 pixels is created using cv2.getStructuringElement. This kernel is used in the
morphological operation with the cv2.MORPH_CLOSE method, which merges adjacent white areas (bright
objects) by closing small gaps between them. This process is repeated three times (iterations=3) to ensure
that small contours near larger contours will be merged, resulting in larger contours. After the morphological
operation is complete, the contours present in the modified image (morphed) are found using
cv2.findContours. The cv2.RETR_EXTERNAL function ensures that only the outer contours are found, and
cv2.CHAIN_APPROX_SIMPLE is used to simplify the contour shapes by reducing the number of points forming
the contour. The result is a list of larger contours that are combinations of previously separated small contours.

4.1.4 Filtering Contours in the Image

# Filter kontur kecil

min_contour_area = 2 # Batas minimum area kontur

filtered_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area)
# Mendapatkan bounding box untuk kontur yang telah difilter
bounding_boxes = [cv2.boundingRect(centour) for contour in filtered contours]

Figure 12. Code for Filtering Contours in the Image

This code functions to filter out small contours in the image, so that only larger contours are retained. First,
the minimum contour area threshold is set with min_contour_area = 2, which means only contours with an
area greater than 2 pixels will be retained. Then, contour filtering is performed by creating a new list,
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filtered_contours, which only contains contours with an area greater than the minimum value. This filtering
uses list comprehension, where cv2.contourArea(cnt) is used to calculate the area of each contour. After the
smaller contours are removed, the bounding boxes for each remaining contour are calculated and stored in
the bounding_boxes list. These bounding boxes are calculated using cv2.boundingRect(contour), which
provides the top-left corner coordinates, width, and height of the bounding box surrounding each filtered
contour. As a result, this code prepares the data for the next stage, where only relevant and sufficiently large
contours will be further processed.

4.1.5 Determining the Distance for Merging Bounding Boxes and Adding Margin

# Jarak maksimum untuk menggabungkan bounding box
max_distance = 5@
merged_boxes = []

while bounding_boxes:
box = bounding_boxes.pop(@)
to_merge = [box]

for other_box in bounding_boxes[:]:

if (abs(box[e] - other_box[@]
to_merge. append (other_box

bounding_boxes.remove(other_box)

<= max_distance and abs(box[1] - other_box[1]) <= max_distance):

if len(to_merge) > 1:
merged_box = to_merge[@]
or other_box in to_merge[1:]:
merged_box = merge_boxes(merged_box, other_box)
merged_boxes. append (merged_box)
else:

merged_boxes.append (box

# Margin untuk boundin,
margin = 15

Figure 13. Code for Determining Distance and Margin

This code is used to merge bounding boxes that are close to each other into a larger box. First, the maximum
allowable distance for merging bounding boxes is set with max_distance = 50. The code then processes each
bounding box one by one using a while loop. For each bounding box, the code searches for other bounding
boxes whose distance from the current bounding box does not exceed max_distance either horizontally or
vertically. All bounding boxes that meet this distance criterion are collected in the to_merge list, and merged
bounding boxes are removed from the bounding_boxes list. If there is more than one bounding box in the
to_merge list, they are merged into a large bounding box using the merge_boxes function, and the result is
stored in merged_boxes. If there is only one bounding box in to_merge, it is directly added to merged_boxes.
Next, the code sets an additional margin with a value of margin = 15, which can be used to provide extra
space around the merged bounding boxes. This ensures that the merged box covers a sufficiently wide area
around it.

4.1.6 Saving and Displaying the Result Image

# Gambar bounding boxes pada gambar asli
for box in merged_bo
X; ¥, W, h = box

cv2,.rectangle(img, (x - margin, y - margin), (x + w + margin, y + h + margin), (@, 255, @), 2

# Menyimpan
output_path
if not cv2.i

raise IOEr

ite(output_path, img
ror(f"railed to save image {output_path}")

n gambar akhir dengan bounding bo
cvtColor(img, cv2.COLOR_BGR2RGB))

sil Deteksi Karakter Aksara OKU Timur dengan Bounding Box'
Figure 14. Code for Saving and Displaying the Result Image

This code is used to draw the merged bounding boxes on the original image, then save and display the results.
First, the code draws each bounding box in the merged_boxes list on the original image (img). For each
bounding box, the coordinates and size (x, y, w, h) are taken, and a bounding box is drawn around it by
adding a margin on each side. This margin is added with a value of margin = 15 to ensure that the bounding
box covers the area around the merged bounding boxes. After all bounding boxes are drawn, the image with
the bounding boxes is saved to a file named segmentasi_karakter.jpg using cv2.imwrite. If the image saving
fails, the code will output an error message. Finally, the detected image with bounding boxes is displayed
using Matplotlib. The displayed image is converted from the BGR color format to RGB to ensure correct display,
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and is given the title "OKU Timur Script Character Detection Result with Bounding Box" to provide context to
the visual result. Below is the result image from the character segmentation stage.

Figure 15. Result Image of Character Segmentation Stage

After the image is successfully saved, the next steps are cropping and grouping (clustering), and then the
created dataset will be trained using a deep learning model so that it can later be used for image classification.

4.2 Discussion

Budiman et a/. (2023) emphasize the importance of diverse and comprehensive data in building a robust
handwritten character recognition system, especially for local scripts such as those found in OKU Timur. In
this study, data collection was carried out meticulously through the distribution of questionnaires containing
various character variants, ensuring that the resulting dataset truly represents the diversity of existing scripts
[3]. Adipranata et al. (2014) highlight that the use of morphological techniques like dilation is very helpful in
the image segmentation process, particularly for clarifying and connecting separated parts of characters due
to scanning artifacts or irregular handwriting. In this research, dilation was applied to thicken the script
components, making it easier to detect lines and separate characters [2].

Mathew et al. (2015) state that sorting contours based on their vertical positions is highly effective for
extracting lines and characters from handwritten images. This approach was also implemented in the present
study, where detected contours were sorted to ensure that each character could be isolated properly. The use
of bounding boxes to segment each character further simplifies subsequent processes, especially when
preparing data for machine learning models [8]. Hamanrora et a/. (2024) also demonstrate that the bounding
box technique is highly beneficial for segmenting Komering script, which shares similar characteristics with the
OKU Timur script. With this approach, each character is clearly separated, making the labeling and training
processes for the model much more efficient [19]. Memon et a/. (2020) add that filtering out small, irrelevant
contours is crucial to prevent the character recognition system from being disrupted by noise or artifacts from
the scanned images. In this study, only contours above a certain size threshold were processed further,
ensuring that the quality of the data used for model training remained high [9]. Sapitri et a/. (2023) underline
that the quality of segmented data significantly affects the performance of deep learning models. Therefore,
attention to detail in every stage of segmentation and preprocessing is essential to ensure that the model can
recognize characters with high accuracy [12]. This research combines scientifically proven methods and adapts
them to the unique characteristics of the local script. From comprehensive data collection, careful
segmentation, to well-prepared datasets for deep learning, every process was conducted systematically and
thoughtfully. This forms a strong foundation for the future development of regional script recognition
technology.

5. Conclusion and Recommendations

Based on the results of this study, a total of 1,020 images were processed. These images were obtained
from questionnaires that had been completed and then scanned using a scanner. Subsequently, the images
underwent a preprocessing stage aimed at improving their quality before entering the segmentation phase.
This research utilized the Bounding Box method to process images of the OKU Timur script that had passed
through the preprocessing stage. This method effectively helped to separate the characters on the
respondents’ answer sheets. By using the Bounding Box method, the segmented character images could be
easily processed in the following stages, namely cropping and clustering. A suggestion for improving the
segmentation process is to develop or add code that enables the input of multiple images at once. Currently,
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images must be input into the program one by one, which can be very time-consuming if there are many
images to process.
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