International Journal Software Engineering and Computer Science (IJSECS)

4 (3), 2024, 1109-1127
Published Online December 2024 in I1JSECS (http://www.journal.lembagakita.org/index.php/ijsecs)
P-ISSN: 2776-4869, E-ISSN: 2776-3242. DOI: https://doi.org/10.35870/ijsecs.v4i3.3138.

RESEARCH ARTICLE Open Access

Identifying and Mitigating Web Application
Vulnerabilities: A Comparative Study of
Countermeasures and Tools

Sayed Elham Sadat *
Information Technology Department, Kabul Education University, Kabul, Afghanistan.
Corresponding Email: s.elham2011@gmail.com.

Mohammed Fahim Naseri
Information Technology Department, Kabul Education University, Kabul, Afghanistan.
Email: fahim.naseri456@gmail.com.

Khosraw Salamzada
Information Technology Department, Kabul Education University, Kabul, Afghanistan.
Email: kh.salamzada@gmail.com.

Received: August 7, 2024, Accepted: November 10, 2024, Published.: December 1, 2024.

Abstract: In the current age of technology, web applications and websites have experienced significant
growth. This expansion has made their security a critical area of research. Web applications offer benefits,
which makes user’s lives easier. In this paper, common web application vulnerabilities and effective
strategies to mitigate the vulnerabilities are identified using a comparative study of countermeasures and
open-source web application vulnerability assessment tools. Specifically, the top ten web application
vulnerabilities and their countermeasures are investigated. Accordingly, several open-source vulnerability
assessment tools are also introduced. The review highlights that with the developments and deployments
of web applications on the internet, users are chased by a remarkable number of cyber-attacks. Attackers
take advantage of available vulnerabilities in a web application or website, such as SQL injections, cross-
site scripting, and broken authentications. This paper concludes by providing the best practices to mitigate
cyber-attacks on web applications and suggests future directions for enhancing vulnerability assessment
through machine learning techniques.

Keywords: Web Security; Vulnerabilities; Web Applications; Open-Source Tools; Countermeasures.

© The Author(s) 2024, corrected publication 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made. The images or other third-party material in this article are included in the article’s Creative Commons license unless stated otherwise
in a credit line to the material. Suppose the material is not included in the article’s Creative Commons license, and your intended use is
prohibited by statutory regulation or exceeds the permitted use. In that case, you must obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

1109

1110 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

1. Introduction

In today’s digital world of ever-increasing technology, it would be difficult or almost impossible to live
without these technological advancements. In respect to this, cybercrimes have a noticeable increase, and
everyday thousands of devices and services are being attacked in cyberspace in order to access important
information or organizations. Therefore, cybersecurity has gained much importance and become a part of our
lives. Whenever a person is submitting or uploading their data online on the internet, that data becomes
vulnerable to a huge number of cyber-attack or cybercrimes, which cause significant damage to the businesses
and services associated with government or organizations. Cybersecurity offers security measures and
techniques to prevent unauthorized access or exploitation of massive data available online. These security
measures are applied to applications, networks used for communication, and devices connected to the
network.

Cybersecurity involves the protection of important information and also devices from cyberattacks on
cyberspace occurring. Collection of customers information, social platforms where personal and private
information is being collected, and government organizations where secret, defense, and political information
are maintained and managed in huge databases. It describes how personal and governmental data can be
protected from vulnerable attacks on cyberspace. With respect to growth in the number of web- based services
users every day, there is a huge increase in the number of threats to information as well, with the cost of
cybercrimes estimated in billions [1]. Web applications are one of the great technologies which has had a
frequent improvement in the last decade, web application technology improved both the quality and ability of
the services offered by most of the organizations. Web applications includet ammost all of today's life and have
become a major part of today’s business which made it easy to have interactions and communications with
customers. Websites and web applications are the combination of one or more than one web page which is
being accessed using browsers on devices connected to a server.

As the improvements and the need to access the web applications and web sites are increasing day by
day, there is a huge risk that unauthorized persons or identity on the network (internet) will access or modify
the confidential data and maintain the integrity among them. Software and web applications are designed and
developed with the motivation of providing features and functionalities to address the needs of users and
customers by providing easier usage. Web application security emphasis on different software bugs available
in an application which will cause the application to do something bad [2].

Websites that provide huge services and facilities like Banking, Business transactions, online shopping,
social networking are having a higher risk of being victims of unauthorized access or modification of
information stored in databases. They should keep the services up to date and also identify the vulnerabilities
and loopholes to make their services and confidential information secure. Consequently, the enormous growth
in the number of vulnerabilities and attacks on web sites and web applications make it important to study and
identify the vulnerabilities to secure web applications and websites from being a victim.

The real attack on a web site or web application happens when the transaction is being initiated between
the server and the client and later on the server sends the information to the client. When the application is
being rendered it has a greater chance that the intruder or attacker input the malicious code through the
browser. Accordingly, common types of miss configurations such as full path disclosure, error reporting,
standard passwords, default settings, and many other weaknesses which cause information leakages which
may have a good value for intruders to attack and access the services are available in four out of five web
applications. In 2018, there was a fall in the percentage of web applications having vulnerability to XML
External Entities (XXE). This vulnerability entered the OWASP Top 10 list in 2017, immediately taking fourth
place [3], shown in Figure 1.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1l Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

AB:2017 - Security Misconfiguration

79% —
A7:2017 - Cross-Site Scripting (XSS)

77% —
A2:2017 - Broken Authentication

74% —
A5:2017 - Broken Access Control

53% — I
A1:2017 - Injection

35% —
A3:2017 - Sensitive Data Exposure

28% — I
A9:2017 - Using Components with Known Vulnerabilities

28% —
A4:2017 - XML External Entities (XXE)

2% —4

AB:2017 - Insecure Deserialization

2% —4

0% 0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B Hign W Medium Low

Figure 1. OWASP Top 10—-2017 vulnerabilities percentage available in web apps.

The measures to these security threats and attacks on web applications is to identify the vulnerabilities
and understand the attacks and countermeasures to them and ask the developer to fix the loopholes available
at the application [3]. Accordingly, the main contribution of this paper is to:

1) Investigate the top ten web application vulnerabilities which poses huge risk to organization.

2) Discuses various countermeasures which can be implemented to mitigate web application vulnerabilities
and reduce the risk of exploitation.

3) Introduce and evaluate various open-source vulnerability assessment tools which can be used to identify
and assess web application vulnerabilities.

4) Highlight the importance of proactive vulnerability management and ongoing monitoring of web
applications to ensure that they remain secure over time.

This study aims to provide an overview of the top 10 vulnerabilities in web applications that pose a high
risk to organizations, the precautions that can be taken to avoid such risks and the effectiveness of various
open-source vulnerability assessment tools in detecting and preventing Web Application security exploits.
Therefore, this study illustrates how implementing such a proactive vulnerability management approach, along
with continuous monitoring, is critical to securing the long-term resilience of web applications.

2. Research Method

In this paper, a systematic review and analysis of the most common web application vulnerabilities will
be conducted together with top ten open-source web application vulnerability assessment tools. The research
design consists of a comprehensive review of existing literature, an evaluation of key vulnerability types, and
a comparison of the tools’ effectiveness in the identification and mitigation of these vulnerabilities.

2.1 Data Sources and Collection
The data in this study were collected using a comprehensive literature review of scientific research articles,

reports on web applications which are available publicly along with the performance of open-source web

application assessment tools.

1) Research Reports and Scientific Articles
The studies which were done by Positive Technologies [1], Al-Sanea et al. [2], provided insights into the
prevalence of different vulnerabilities such as SQL Injection and Cross-Site Scripting (XSS).

2) Industrial Evaluations
Documents from industries like OWASP or PortSwigger were selected, to determine the effectiveness of
OWASP ZAP or W3AF in real world security assessment procedures.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1112 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

2.2 Evaluation of Web Application Vulnerabilities
The study focuses on the OWASP Top 10 vulnerabilities, such as SQL Injection, Cross-Site Scripting (XSS),

and Broken Authentication. These Vulnerabilities are examined based on the following criteria:

1) Prevalence
The likelihood of the vulnerability in real world web applications, as demonstrated by studies and industry
reports [5][6].

2) Impact
The possible harm or exploitation might result from failing to mitigate vulnerability.

3) Causes
The Common errors in programming misconfiguration or weaknesses in security procedures that lead to
the existence of each vulnerability.

2.3 Selection of Vulnerability Assessment Tools
The web application vulnerability assessment tools were selected based on literature review and public
industrial reports. The tools are selected based on the following terms.
1) Open source
The criterion should be satisfied in terms of freeness, accessibility and popularity.
2) Documented effectiveness
The selection was based on previous studies, technical and industrial reports that presented the strengths
and weaknesses of the tools.
3) Covering OWASP Top 10 Vulnerabilities
The tools should effectively identify the wide range of vulnerabilities, specifically those on the list of
OWASP top 10.

2.4 Comparison of Vulnerability Assessment Tools

The analysis and comparison of open-source web assessment tools was based on documented
capabilities, case studies, and review. The tools were compared based on their performance in detecting the
OWASP top 10 vulnerabilities.

3. Result and Discussion

3.1 Results
3.1 Working of Web Applications
Many businesses, organizations and government agencies use the internet as a cost-effective, fast and

secure communication medium with their customers and users. The effectiveness of this technology is when
the organization can collect and store the data and has a proper system to analyze, process and present the
data back to the user, they provide the functionality to the users to use the services without downloading and
installing any other software. Web applications are composed of one or many web pages that are stored and
maintained on a server, and the users can access them using a web browser already installed on their devices,
shown in Figure 2. Web applications together use server-side scripting languages like PHP and ASP to manage
the storage and retrieval of the information, client-side scripting languages like JavaScript, CSS (Cascading
Style Sheet) and HTML (Hyper Text Markup Language) to present the information to the users and back-end
databases, where the data is being kept. This allows the users and customers to contact the companies, fill in
the forms, do online shopping and it allows the employees to manage the information, share information,
create and edit documents and work on projects [4]. Here is the web applications workflow:

1) The user sends a request over the internet or a local network to the server through either a web browser

or an application user interface.
2) The request received will be forwarded to an appropriate web application server.
3) The application server will process the request by manipulating data from database, and the result will
be delivered to the user.
4) Web server will receive the processed data from the application server.
5) The web server responds to the user’s browser, displaying the requested data on the user’s screen.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1113 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

Static HTML Page

Executable

Dynamic HTML Page

Web Database
Browser
Ll —
‘Web Server
A
_ ClientSide J (Server Side)

Figure 2. Web Applications Architecture.

3.2 Common Web Application Vulnerabilities and Countermeasures

In cybersecurity, vulnerabilities are the security flaws and weakness which allow the intruder or
unauthenticated users to perform an unauthorized action or damage the system or services. An attacker or
intruder who wants to exploit the vulnerability of a system should have at least one tool or a technique to
establish a connection with the weakness or flaw which is there in the system. There are immense number of
vulnerabilities found every day, and it is difficult to remove or eliminate the web application vulnerabilities,
because of two main reasons. First, mostly the web application development phase is too rapid which is very
short time. Secondly, in most scenarios, the Management Information System engineers (MIS) are involved in
the process of developing web applications, most of whom do not have as much training and professional
experience at large software firms, like Microsoft, Apple, Google and Facebook [5]. The Open Web Application
Security Project (OWASP) is an online community which produces articles, technologies, tools, and
documentations for improving application security which are available for free. OWASP Top Ten project: The
"Top Ten" project was first published in 2003, and it is regularly updated. The aim of this project is to identify
some of the most serious threats which organizations and business are facing and raise awareness about
application security [6]. The OWASP top 10-2017 used more than 40 data submissions from application security
and by an industry survey which was completed by over 500 individuals, gone through vulnerabilities gathered
from hundreds of organizations and more than 100,000 real-world applications [6].

3.2.1 SQL Injections

According to web application architecture, web applications are using databases at the backend, to
which web pages are connected in order to store and fetch the user’s data to database and display it to the
browser or user interface The intruders are trying to exploit database layer vulnerabilities using SQL-Injection
which will help to understand the schema of the database which is the most important part of a database,
that will allow them to add or include data within the schema of the database. Mostly this attack happens
because of lack of a proper checking and filtering mechanism for the users input in the client slide before the
data is being input to the database system [7]. In SQL-Injection, the intruder sends unreliable data (malicious
code) as a part of SQL Command or query to an interpreter to exploit vulnerabilities in a web application’s
database. Malicious code executes that type of queries which can give access to an attacker to receive sensitive
data from databases. Using the INSERT, DELETE, and ALTER queries, the attacker can modify and change the
data available in databases, which affects the integrity of data in database. Consider the following URL which
is requested from a Library web application which displays books in different sections.

https://abc.com/section?sec=Science
An SQL query which will retrieve details of the desired section books from database will be generated.
SELECT * FROM books WHERE cat = 'Science' AND active = 1

It will return all books which belong to the science section and not allowed to be displayed to the users.
The active=1 provides a restriction which will hide the books which are not set to be displayed to the users.

For the hidden books the value is released = 0. Consider that the application is vulnerable to SQL Injection
attack, so attack can be implemented like:

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1114 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

https://testing.com/section?sec=Science’--
Query generated from the above request will be like:
SELECT * FROM books WHERE section = 'Science'--' AND active = 1

The double dash (--) sign will make the rest of query as a comment which will not be interpreted by the
server, so it eliminates the impact of AND active=1, which will display all books which should be displayed, or
which should not be displayed to the users. To avoid SQL-Injection attacks on web applications, the following
measures should be implemented:

1) Isolate user input from command structure with the help of parameterizing SQL queries.

2) Periodically update and patch the system.

3) Use of safe APIs for web applications is highly recommended.

4) Deploy appropriate privileges in your system.

5) There should be a proper input validation system to restrict special characters and enforce proper data
types.

3.2.3 Broken Authentication and Session Management

The process of verifying an entity or web app which claims to be legitimate is called authentication.
Accordingly, the term broken means: inadequate password policies, infinite logon attempts, information
leakage or failed logins and insecure password recovery procedures which results in passing the authentication,
receive complete control of accounts, account theft and access to sensitive data and damage to data.
Authentication and session management is also one of the important parts of web application security, for
which the developer should implement proper security practices to secure it. Flaws and bugs in this part can
cause many failures in protecting users’ credentials and session tokens which leads to serious damage like
accessing users accounts or administrator accounts, privacy violations and alteration of credentials in database
[3].

In web applications the sessions are established to keep track of requests which are received from users’
side. Accordingly, HTTP does not have the above-mentioned feature, thus, the developers are responsible for
creating them. The session tokens which are assigned to the users should be secured and protected properly,
because the attacker can hijack an active session anytime and undertake the identity of a user. Through this
vulnerability the attacker will be able to compromise passwords, keys, or session tokens assigned by the
system by which it will assume other user’s identities [6]. Mostly all web applications environments, web
servers, and application servers are vulnerable to this vulnerability. Assume that Application session timeouts
are not set properly in an application. A user is properly authenticated and logged into a public computer
system to have access to an application. At the end, instead of clicking the “logout” button to properly logout
of the system and end the session. The user just clicks the close button of the browser. A few moments later
an attacker can access the same application page using the same browser with that user’s authentication.
Because the session was still active and not destroyed. The following rules should be focused on and enforced
by the developer for providing higher security for applications.

1) Proper mechanism for enforcing the strength, length and complexity of passwords.

2) Proper mechanism of hashing or encrypting the storage of the passwords.

3) Proper mechanism and rules for controlling the changing of the passwords

4) Proper mechanism for protecting the active session ID.

5) Developer should implement a low secure password checking mechanism in web applications.

6) Do not set the default or commonly used username and passwords, especially for admin accounts.

7) A secure built-in session management policy or session manager should be enforced and implemented in
server side by the developer, in which uniquely random session IDs are securely created, assigned and
maintained only for legitimate users after successful login. And, those IDs should be invalidated and
destroyed after the logout, timeouts and being idle for some time. Accordingly, the generated IDs should
not be included in the URL of the application.

8) The failed login attempts should be limited and there should be a system to log all failures and alert the
administrator when attacks are detected.

3.2.4 Exposure to Sensitive Data
This is one of the widespread attacks with great effect on web applications security. In vulnerability,
the attacker is trying to access and receive clear text and keys from the server or perform a man in the middle

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1115 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

attack when the data is being transferred from client’s browser to server. Instead of attacking the encrypted

or crypto data directly. 773 million Users credentials leakage from different attacks are reported in early 2019,

which is really a big security misdeed” [8]. If the sensitive data is not encrypted, weak key generation and

management, weak algorithms and protocols for data which is in transit from server side to client side are

employed over data are the most common type of flaws. Assume that a web application is using an automatic

database encryption mechanism for encrypting credit card numbers in database. However, this means it also

decrypts that data automatically when it is being retrieved, this allows a SQL injection flaw to retrieve credit

card numbers in clear text [6]. The following steps can be taken to prevent such a scenario.

1) Classifying the data that is processed, stored, or transmitted by an application to categorize the sensitive
data.

2) Applying the controls according to classification.

3) Encrypt sensitivity of data at rest.

4) Use only widely accepted implementations of protocols available, crypto algorithms and appropriate key
management.

5) Encrypting all data which are in transit from server side to client using TLS (which is highly secure
protocol), enforces encryption using directives like HTTP Strict Transport Security (HSTS).

6) Always ensure data integrity and authenticity.

7) Store passwords hashed and salted.

3.2.5 XML — External Entities (XXE)

With this vulnerability the attacker will be able to interfere with application XML data processing. The
attacker can exploit vulnerable XML processors by uploading XML or including hostile content in an XML
document, exploiting vulnerable code. Mostly it enables the attacker to view and interact with files available
on the server filesystem and communicate with backend or any other external system with which the
application itself is having access to it. in certain cases, the attacker will be able to deteriorate an XML -
External Entity attack to compromise the targeted system or other infrastructures available in the backend,
scan internal systems, executing remote request given by the server, perform a denial-of-service attack by
leveraging the XXE vulnerability to perform (SSRF) or other types of attacks [9]. There are different types of
applications which provide file upload services to the server. Some of those files use XML or may contain XML
as their subcomponents. For Example, DOCX for office document formats and SVG for images are XML-based
formats. Assume that a web application has the feature that the users can upload images which are being
processed and validate on server after they are uploaded. As the SVG format, which is a known type of format
for images uses XML, this enables the attacker to submit the malicious SVG image and will be able to get
access to the hidden environment to exploit XXE vulnerabilities. The following are some of the ways to avoid
such situations.

1) Mostly application’s XML parsing library are supporting many dangerous and risky features of XML which
does not need to use, therefore the disabling those features will help to prevent XXL attacks effectively.

2) Verify that XML or XSL file upload functionality validates incoming XML using XSD validation or similar [6].

3) Implement whitelisting mechanism for input validations in server-side and filtering to prevent hostile data
within XML documents, headers, or nodes.

3.2.6 Broken Access Control
Access control is the procedure that defines how the applications grant access to contents and functions,
which is also called Authorization. For developers it is a challenging task to implement a reliable access control
system and policy for their applications. This weakness is mostly common due to lack of effective functional
testing by application developers or lack of automated detection. An effective method of detecting missing
and ineffective access control is manual testing, which also includes HTTP methods as well. Access Control
enforces policies for users, such that the users should not be able to act outside their given permissions
domain. Mostly failure in the system causes unauthorized access to information, modification and also
destruction of data or performing and executing some actions which are outside the limit and permission of
the user. By passing access control checks by modifying URL and simply using a custom API attack tool are
the common access control vulnerabilities [10]. If a non-admin or an unauthenticated user can access any one
of these pages, it is considered as a flaw. To prevent users can follow
1) Log and alert access control failures to admins when appropriate.
2) Use HTTPS instead of HTTP
3) By default, denying access to functionality.
4) By using Access control lists and role-based authentication mechanisms.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1116 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

3.2.7 Security Misconfiguration
This vulnerability occurs when the developers are not able to implement all security controls for a server
or a web application or make errors while implementing those security controls and polices. Hence, the
organization is thinking that they are having a safe and secure environment, but it has dangerous mistakes
and gaps which can lead to different vulnerabilities and security risks. Attackers will often benefit of unpatched
flaws or by accessing default account, unprotected files or unused pages to get unauthorized access to the
system. Any kind of lope hole or security weakness can be exploited by an attacker, which can lead to
unauthorized access to the system. For having a highly secure web application, it is required to secure thet
ateady defined and deployed configurations for our web applications, web servers and other entities related
to our web application [11]. As the application server admin console is automatically installed in the server
and not removed. So, when the attacker discovers the standard admin pages are on your server, logs in with
default passwords, and takes over [11]. The following can be some measures to prevent it.
1) For having a high secure system, the organizations should have their own defined policies through which
security rules are created.
2) Installing, updating and regular testing of security patches should be done.
3) The effectiveness of deployed configurations should be verified in almost all of the environments using
an automated process.
4) Considering roles and permissions like disabling all default accounts or changing passwords in a specific
interval of time, disabling administrator accounts.

3.2.8 Cross-Site Scripting (XSS)

This type of attack happens when a web application is used to send malicious code that is generally
known as browser-side script, to a different end user. Through this attack, the attacker is injecting malicious
scripts into the website code. Generally, such an attack is the result of having improper input validation in the
user side. Therefore, this gives the attacker the ability to insert malicious scripts into the application code and
will be able to get access to the application. These vulnerabilities will be used to access confidential data, steal
identities, perform session hijacking, denial of services attack or bypass the restrictions deployed on web
application. XSS is one of the most dominant issues in Top 10 list of OWASP, and is found in around two thirds
of all web applications [6]. The following are the types of attacks.

1) Stored/Persistent XSS
Here the malicious contents which are called payload, mostly Java Script codes, are injected into a
targeted application which will be permanently stored or persisted into the application, like in the database
of application [12].

2) Reflected XSS
In this case, the attacker’s payload will be injected as a request sent to the server. It will be reflected as
the HTTP response will include the payload from the HTTP request. Attacks are delivered via other routes
like malicious links or phishing emails. When the user clicks on link or submits data, the browser then
executes the code. These attacks have mostly happened through social networks [12].

3) DOM-based XSS
This is an advanced type of XSS attack. It is mostly a client-side attack in which the infected payload will
never be sent to the server. As the application’s client-side scripts writes users data to the Document
Object Model (DOM), and that data is subsequently read from DOM by application and will be outputted
to browser, the attacker can inject payload which will be stored in DOM and executed during read phase
from DOM [12].

Assume that an online shopping application, in which users can embed the HTML Tags in comment
section which will become the permanent component of the page, and that will cause the browser to parse
them along with the rest of code whenever the page is accessed. For example, the attacks comment for an
item looks like this:

Good product, with good look <script src=http://testing.com/mycode.js> </script>

So, anytime that the page is accessed the tag in comment section will be parsed and it will activate the
JavaScript file from attacker’s website, which is able to steal user session cookies. The attacker could access
the user’s account and personal information with the help of stolen session cookies. The following are some
of the preventive measures.

1) Using Web Application Firewall is a better protection against those attacks.
Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

117 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

2) Avoid untrusted HTTP request data which are based on the context in the HTML output.

3) The application code should never output data received as input directly to the browser without checking
it for malicious code.

4) Use modern frameworks for application development, most modern frameworks will escape dynamic
content by default.

3.2.9 Insecure Deserialization

In web applications the concept takes an object and transfers it to byte stream so that it can be in a
proper format to traverse in HTTP network or stored in a database. The reason to use serialization is to save
or persist in the state of object, so whenever messages are sent across the network the state of persistence
will be there. Turning back the streams of byte to the same object is called deserialization. Many programming
languages utilize serialization and deserialization. When the untrusted user input is taken without a proper
validation and that input is deserialized from byte stream back into the object, an attacker can take advantage
of that and can insert untrusted input and the process of deserialization can lead to remote code execution
attacks, which is one of the most sever types of attacks possible [6]. For example PHP forum uses PHP object
serialization to save a "super" cookie, which contain the user's login details, role, password hash, and other
state. Assume that a forum created using PHP is using PHP object serialization to save certain user’s
information such as ID, password has, privilege and other related data:

a:4:{1:1;1:678;1:1;s:7:"Ali";1:3:"user";
1:3;s8:32:"b6a8b3bea87fe0e05033£8£3¢c99%bc9 60"; }

Here the attacker will change the serialized object to gain Admin privileges.

a:4:{1:1;1:0;1:1;s:5:"Ahmad";1:3:"admin";1:3;s:32:"b6a8b3bea87fe0e05033£8£3c99%bc
9 60";}

The following are some of the preventions.
1) Do not accept untrusted users’ input
2) Validate users input properly
3) Network connections with containers or server which deserialize, should be monitored or restricted for
both incoming and outgoing connection.
4) Enforcing strict type constraints during deserialization
5) Monitoring deserialization and alerting if a user deserializes constantly.

3.2.10 Using Component with Known Vulnerabilities

It is easy to find already available exploit for huge types of known vulnerabilities, there are some other
vulnerabilities which require efforts to develop a custom exploit. In any web application some vulnerable
components like working libraries can be exploited with automated tools [6]. Virtually every application has
these issues because most development teams don't focus on ensuring their components or libraries are up
to date. In most cases, the developers don't know the component they are using or the versions they are
using and component dependencies. If the developer doesn’t know the versions of all components directly
used or nested dependencies used in client and server-sides, the developed application will be highly
vulnerable. Accordingly, if the software is vulnerable, unsupported or out of date Operating system,
Web/Application server, DBMS, all components and runtime environments and all libraries are used in
application development, the developed application will be highly vulnerable to attacks. As the web application
and its components have the same privileges, therefore any flaw or vulnerability in any component of an
application can have a bad effect on the application itself. Those flaws can be coding errors during development
process or already installed backdoors in application [6]. The following can be prevention.
1) Availability of patch management system for application
2) Remove unused:

a. Dependencies.

b. Unnecessary features components.

c. Files, and documentation.

d. Use components only from official sources.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1118 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

3.2.11 Insufficient Logging and Monitoring
This vulnerability comes into an action that events which are highly critical in security aspect are not
recorded or may be omitted important information about an event when logging, or the system is not logging
the current events. The lack of such a system makes it harder to detect and handle the attack which is
happening now [13]. Assume that an attacker is trying to download a huge amount of data from the server,
which indicates an unusual huge amount of outgoing traffic from the server. With the help of proper
monitoring system, such data extraction can be detected and can be prevented such as:
1) Ensure all login, access control failures, and server- side input validation failures can be logged properly
which will help to identify suspicious or malicious accounts [6].
2) To make sure that all logs are created in a format which can be easily analyzed by central log management
solution.
3) To establish effective monitoring and alerting plans for applications.

3.3 Open-Source Vulnerability Assessment Tools

Vulnerabilities are the key source for malicious activities like cracking web sites and systems.
Vulnerability assessment enables you to recognize, categorize and characterize the security flaws and holes in
an application, computer systems, or in networks. The developers and system administrators can take
advantage of vulnerability assessment methods and tools to make their applications and system safe and
secure. Vulnerability scanners and assessment tools are making the security auditing task automated and can
play a great role in finding flaws and major security risk in websites and systems.

3.3.1 OWASP Zed Attack Proxy (ZAP)

Zed Attack Proxy, also known as ZAP, is among the world’s most popular security tools, which is free
and open-source, that is developed by AWASP and is actively maintained by hundreds of international
volunteers. ZAP is available for Windows, Unix/Linux and Mac platforms. ZAP is a very simple and easy to use
tool which can be used to find wide range of web applications vulnerabilities. This tool will enable you to
automatically detect security vulnerabilities of any web application, even if you are in developing and testing
stage. Consequently, this tool can also be used to perfume manual security tests over your web application
[6]. OWASP Zed Attack Proxy provides you with the ability to detect OWASP top 10 security threats that your
website/application might face. Some key features of OWASP ZAP

1) Automatic Scanner

2) Traditional but powerful spiders

3) Fuzzer

4) Web Socket Support

5) Dynamic SSL certificates

6) Plug-n-hack support

7) Smartcard and Client Digital Certificates support
8) Authentication support

9) Intercepting Proxy

3.3.2 W3AF
W3AF is an open source, web application attack and audit framework written in Python. This is a
powerful tool which can detect most well-known and most common vulnerabilities in a web application. This
tool is equipped with more than 130 plugins which will make it easier to detect the flaws and vulnerabilities.
[14]. W3AF is consist of two main parts, the core and plug-in. the core coordinates and manages the process
and provides features which are consumed by plugin-ins, which find vulnerabilities and exploit them. It is
available for Linux, Mac and windows platforms. Some key features of W3AF:
1) To identify and exploit vulnerabilities, W3AF can implement web and proxy servers
2) To provide Proxy support
3) To use Fuzzing engine
4) Provides Knowledge base
5) Support File upload using multipart
6) DNS cache
7) HTTP Basic and Digest authentication
8) Cookie handling
9) HTTP response cache

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1119 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

10) Support different logging methods like:
a. Console
b. Sent by email
c. Text, CSV, HTML and XML files.

3.3.3 Arachni
Arachni is an open source, modular and high-performance penetration deployment environment which
can detect huge number of well-known vulnerabilities. It is free, with its source code public and available for
review. Arachni is multi-platform, supporting all major operating systems (All common operating systems) and
distributed via portable packages which allow for instant deployment [15]. Some key features of Arachni are
as follows:
1) Capable of learning from HTTP response to present better results
2) REST API
3) Support highly complicated web applications which make heavy use of technologies such as:
a. JavaScript
b. HTML5
c. DOM manipulation
d. AJAX.

3.3.4 Skip Fish

Skip fish is highly quality, high speed, ready to use and an active web security inspection tool developed
by google. This tool can formulate an interactive sitemap for a website with crawl recursive in nature and
probes based on dictionary [16].

3.3.5 Wapiti
Wapiti is an open-source command-line tool used for auditing web applications security. It scans web
pages and injects data to check if a script is vulnerable or not. This tool supports both GET and POST HTTP
attacks and also able to detect multiple number of vulnerabilities available in cyber space. This tool is applicable
for Windows, Linux and Mac [17]. It can detect the following well-known vulnerabilities:
1) Backup files disclosure
2) CRLF Injection
3) SQL Injection
4) XSS attack
5) File Inclusion
6) File Disclosure
7) Command execution detection
8) Weak .htaccess configuration

3.3.6 Vega
Vega is a free open source, automated web vulnerability scanner and testing platform written in Java

which offers a GUI based environment. The tool can be extended with the help of powerful API written in
JavaScript. [18] This tool is available for Linux, Mac and Windows platforms.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1120 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

Table 1. Comparative Analysis of Open-Source Vulnerability Assessment Tools
Name Langua Licen Platfor Authentica Acti AP Plu Scann Spid Fuzz AJA CL G Learni

ge se m tion ve I g-in er er er X I U ng

ZAP Java Apac Windo v v vV v v % v Vv Vv x
he WS,
Mac,
Linux

W3AF Python GPLv Windo x v x v v v v x Vv v x
2 WS,
Mac,
Linux

Arach Ruby Apac Windo v v vV v v v v vV X
ni he WS,
Mac,
Linux

Skipfi C GPLv Linux, X X X X v v v X v x X
sh 2 FreeBS
D,
MacOS

Wapit Python GPLv Windo v v X X v v X x Vv x X
i 3 WS,
Mac,
Linux

Vega Java Apac Windo % v oox X v v v x Vv v x
he WS,
Mac,
Linux

3.4 Discussion

Web applications are a critical asset for businesses, organizations, and government agencies, acting as
an efficient, fast, and secure route for users. These applications help collect, analyze, and process user data
seamlessly. Web applications (webapps) are mapped with a combination of back-end processes (server-side
programming languages including PHP and ASP for managing data) and front-end processes (client-side
programming languages such as JavaScript, CSS, and HTML for displaying information) alongside database
storage for storing information. Web applications consist of user interactions with application servers, web
servers, and user browsers, so it is important to understand the architecture and workflow of these interactions
for the application to run securely and reliably.

SQL Injection, Broken Authentication, Sensitive Data Exposure, and Cross-Site Scripting (XSS) attack
vectors can pose serious threats to web applications, and are among the most commonly exploited
vulnerabilities in information systems. Although each type of vulnerability has its own unique mitigation
measures. As a solution, the use of parameterized queries and strict input validation to prevent SQL Injection.
So, The Final Top 10 List Is As Follows And Provides Solutions For Each Broken Authentication Session Id
Secure Based on Session ID that sets restrictions on NUMERIC Failed attempts Set strong passwords While
web application firewalls and use of modern frameworks can significantly reduce the risk of XSS, So, to address
these vulnerabilities and combat the vulnerabilities, a structured effort with proper technology support is
required to maintain data integrity and confidentiality.

Assessment tools like OWASP ZAP, W3AF, Arachni, Skipfish, Wapiti, Vega are the tools required to assess
and fix the vulnerabilities. Both manual and automated security testing are supported with the various features
provided by these tools. OWASP ZAP, for example, allows in-depth threat detection with an easy-to-use
interface. On the other hand, W3AF has the flexibility with 130+ plugins but does not provide API integration.
However, Arachni works well when dealing with complex technologies, like JavaScript and AJAX, which are
commonly used in web applications. Each tool has its own advantages and disadvantages, which requires
careful selection of tools according to the needs of the organization. Efforts to improve web application security
should include measures such as implementing data encryption, system updates and access restrictions, and
creating adequate logging systems. Modern testing tools and approaches that combine automated and manual
methods to detect different types of vulnerabilities also need to be adopted by developers.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1121 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

4. Related Work

Alzahrani et al. (2017), demonstrated the architecture of web applications and also studied and evaluated
a number of security vulnerabilities [4]. According to the study, about 49% of the web applications that have
been reviewed have vulnerabilities with high-risk life. Furthermore, the tools that have been used to scan
those most common vulnerabilities like cross site scripting, SQL Injection, Information leakage and insufficient
transport-layer protection aret ako analyzed. It is also stated that in some cases the designing and
development errors cause most of the vulnerabilities in web applications. In addition to that, weak and
insufficient administration can cause vulnerabilities like information leakage and insufficient transport-layer
protection, so they have elucidated the usage of those tools which help in preventing those vulnerabilities.
Consequently, each tool’s advantages and disadvantages aret ako discussed. According to this paper, security
assessment tools can be used in either browser-side or server-side and it can also be used in both sides.

Patel (2019), conducted a study on the common vulnerabilities, resolution of those vulnerabilities, as well
as the author proposed some methodologies and tools used for determining those vulnerabilities of the time
which helps organizations to secure their services and mitigate the risk of attacks which can be caused from
those vulnerabilities [8]. The proposed tools are both commercial and open source. To make the outcome the
result of the proposed tools, they have prioritized and explained with the CVE number, that can be utilized
from industry standard references. Nagpure et al. (2019) provided an analysis of web application vulnerability
assessment along with penetration testing techniques. This study highlights that manual penetration testing
accuracy is much effective to perform security assessments as compare to automated penetration testing [7].
It is also mentioned that using manual testing technique most famous web vulnerabilities such as Cross site
scripting, clickjacking, SQL Injection, file upload and other weakness are detected in many web applications.
Relatively, in terms of time and money saving, automation testing technique can also use to detect some web
application vulnerabilities and can also preform automated web application penetration tests. Finally, they
have proposed that for vulnerability assessment, companies should have a combined vulnerability assessment
method of both manual and automated testing techniques which will definitely enhance the accuracy in
detecting vulnerabilities in web applications.

Dua et al (2017), have studied a number of common attacks like SQL Injection, Cross Site Scripting
(XSS), etc and also proposed a tool which is based on XAMPP server for both server and client environments,
which will help the security analysts and students to perfume checkup and analysis of web application
vulnerabilities [19][20]. The tool which is proposed is mainly focusing on OWASP list of top 10 attacks, which
is a good mean for developers to fix weakness and bugs using those queries which are used for accessing the
back-end information. Singh et al (2018) discussed the tools where the cybersecurity professionals can
ethically perform attacks to learn about vulnerabilities and also proposed a tool with a legitimate structure that
avoids different web attacks. The authors stated that SQLI, broken confirmation, session management and
XSS are the basic provision strike found on the web [20]. A large number of systems are reviewed against
impediments, accordingly, most of the people are utilizing web administration to their reduction on the globe
to relieve themselves, which cause them huge costs.

Tyagi et al. (2018) studied OWASP WAP and RIPS, two web application vulnerability detection tools which
are basically source code analysis tools. They have done an experiment on (DVWA) and a (bWAPP) web
applications which are vulnerable and full of bugs, based on the experiment, they found that OWASP WAP
provides better results as compared to RIPS [21]. With the help of vulnerable web applications used in the
experimental scenario, we can easily detect vulnerability whether they are TRUE positive or FLASE positive.
Accordingly, it is stated that the commercial version of RIPS may generate better results, but in some cases
open-source tools can only be needed. Al-Sanea et al. (2015) presented the result of assessing and testing
the security posture of almost 150 websites from different categories like financial, governmental, commercial
and academic website of Sudia Arabia with the help of open source vulnerability assessment tools available in
the market [22]. Many vulnerabilities with different level are found, the number of affected websites were
large. In addition, government websites were more secure as compared to commercial websites.

Huang et al (2017) have discussed many web application vulnerabilities and proposed several
countermeasures and pitfalls. With respect to that, VulScan which is a new vulnerability assessment tool that
uses penetration testing and combinative evasion techniques in order to discover cross site scripting and
injection vulnerabilities in a system is being introduced, which will improve the system security. To evaluate
the accuracy introduced system, a number of real web application like OWASP’s WebGoat has been selected
for testing [23]. Accordingly, the total vulnerabilities detected by the VulScan is compared with the total
number of vulnerabilities detected by ZAP. According to the results of the systems, VulScan was able to detect
more SQL Injection and also Cross Site Scripting vulnerability than the OWASP's ZAP.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1122 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

Moniruzzaman et a/. (2019) studied a technique to detect maximum number of vulnerabilities using source
code analysis and penetration testing techniques with minimum efforts. In this method they have evaluated a
number of specific web site in Bangladesh against some most common web vulnerabilities and attacks [24].
The result showed that around 64% of the evaluated web applications are having vulnerabilities, especially
governmental organizations are in serious risk. Sandhya et al (2017) enlightened the need to utilize
penetration testing, and also with the help of Wireshark, they have done penetration testing in order to assess
the security of web sites [25]. They have stated that, Wireshark tool helps ethical hackers to underpin the
system security in users at the level of authentication only and proved that its better and rapid wayout to deal
with vulnerabilities. Pranathi et a/. (2018) reviewed the customer side answer to mitigate and solve the cross-
site scripting attack. They have claimed that, because of poor web surfing background the client system
performance is decreased [26]. Therefore, they have provided a client-side arrangement which is use a well-
ordered that deal with ensure cross site scripting web applications. The framework which is proposed is based
on how to attack a web site through cross site scripting utilizing the contents with the final goal of preventing
attacks.

Efendi et al. (2019) studied various deception techniques which could be used as a defined mechanism
to sense web application attacks and also act as a distraction and protection mechanism to keep the attacker
away from the actual protected services [27]. Yadav et a/ (2018) reviewed several evolving trends and
prevention from web attacks. They havet ako discussed about prevention from several vulnerabilities available
in web applications by providing suitable data types to input, restriction in the use of web server, http request
and restrictions for users to access the files from the root directories [28]. Consequently, overall security
preventions for operating systems and mobile applications aret ako discussed. They havet ako proposed that
the government beside promoting digitalization should also focus restricting rules and regulations to protected
vital information from attacks and frauds.

Gillman et al. (2015) surveyed a number of most common web site attacks and also techniques in order
to mitigate them. They mentioned that the attack detection and mitigation is increasingly involves frequently
performing the processing operation over a large amount of data which is across multiple and different
websites with a specific interval of time [29]. It is also stated that the latest modern attacks are using many
different methods to infect a system and can continue for several months. They havet ako described the
impact and importance of comebacks to lessons learned from those series of attacks which happened in 2012-
2013 on Akamai‘s customers dubbed operation Ababil. Alenezi et al. (2016) have tasted different open source
web applications against some most common security vulnerabilities. They have done static security
vulnerability test in three different categories: (a) Dodgy code Vulnerabilities (b): Malicious Code Vulnerabilities
(c): Security Code Vulnerabilities on different web applications available [30]. They have recommended an
intelligent development frame work which can provide suggestion in order to have a secure development, can
add missing codes and also learn from other expert developers’ practices in order to mitigate and solve
common security vulnerabilities on web applications. Nababud et a/. (2018) study focus on penetration test
comparison of use of http and https on websites using Wireshark tool. Wireshark is used to perform penetration
testing campus webmail individually and tried to fine its vulnerability [31]. They have stated that if the users
want to keep data secure, they should use webmail which is encrypted by HTTPS protocols in data
communications.

Shrivastava et al. (2016) based on study of pervious research and their implementations, studied the
detection and prevention methods of all three types of cross site scripting (XSS) vulnerability. They have tested
so many web applications and as a result they found that cross site scripting issues are in a higher priority. As
in the existing techniques usually the developers are using Java validation and also input filters in order to
prevent client-side infected inputs, on the other hand, some more secure web applications uses Application
level firewalls in order to filter the user’s input, but still they were not able to totally stop the cross site scripting
(XSS) attacks [32]. In their assessment they have found that these are not enough to prevent (XSS) with
dangerous payloads. They stated that, the use of those existing techniques can only the direct infected inputs
from browsers side, but they are not that much strong to prevent the middleware happing attacks. In their
system, they have used the JavaScript validation technique for users input, JavaScript signature mechanism
in order to identify valid JavaScript, sanitization mechanism to clean HTML text, token assignment mechanism
for client-server request during communication, use of HTTPOnly cookies flag, and lastly they havet ako
suggested to use strong application level firewall and proper security assessment and scanner tools to detect
XSS. It is stated that their proposed system can help the developers in handling and detecting different cross
site scripting (XSS) vulnerabilities. They have suggested that hierarchical system because that single level
security is not sufficient to prevent XSS vulnerabilities.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1123 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

Ariful Haque et al (2022), examines typical web application vulnerabilities and the efficacy of
preventative measures. This study proposes a paradigm for preventing exploitation through better design
practices and emphasises the need to find vulnerabilities early in the development process [33]. Although the
study strongly emphasizes the methods for prevention, it does not provide an exhaustive analysis of web
application vulnerability assessment tools. To address this gap, this research focusses on the potential of open-
source tools and how well they can identify a variety of vulnerabilities.

Analyzing these previous studies critically results in realizing that while significant achievements have
been made in web application security, there remain certain gaps, specifically in integration of manual and
automated testing techniques, and the comparison of open-source vulnerability scanning tools. This research
not only fill these gaps, but build upon existing knowledge by purposing a more comprehensive, hybrid testing
process and offering practical insights into the use of open-source tools. Moreover, the related work in this
paper is directly linked to the research outlet. In the critical analysis of literature review, we need a more
dynamic and adaptable Vulnerability management model as identified by different authors in previous studies
that said it forms basis of this research. We identify gaps in current tools and practices to provide a new lens
on how we can improve the security of web applications by testing better or using better tools.

Additionally, the related work in this paper has a profound connection to the main area of study. This
study is conducted based on the critical review of prior studies, which emphasizes the need for a more flexible
and adaptable vulnerability management strategy. It provides new insights on how to strengthen the security
of web applications by improving testing procedures and tool selection by analyzing weaknesses in current
techniques and tools.

Table 2. Comparative Analysis of Related Studies

Study Methodology Findings Tools used
Alzahrani et @l Studied and evaluated 49% of reviewed web Scanning tools for
[4] security vulnerabilities in applications have high-risk common vulnerabilities

web applications vulnerabilities such as cross-site
scripting, SQL injection,
information leakage, and
insufficient transport-
layer protection
Patel [8] Studied common Prioritized vulnerabilities and Both commercial and

vulnerabilities and proposed
methodologies and tools for
determining them

provided CVE numbers open-source tools

Nagpure et al. Analyzed web application Manual testing is more Manual and automated
[7] vulnerability assessment effective than automated testing techniques

and penetration testing testing for accuracy

technigues
Dua et al [19] Studied common attacks Proposed a tool based on Focused on OWASP list of

and proposed a tool for
analyzing web application
vulnerabilities

XAMPP server for analyzing
web application vulnerabilities

top 10 attacks

Singh et al Discussed ethical hacking Stated that SQLI, broken Ethical hacking tool
[20] and proposed a tool with a confirmation, session
legitimate structure that management, and XSS are the
avoids different web attacks basic provisions strike found
on the web
Tyagi et al Studied OWASP WAP and Found that OWASP WAP OWASP WAP and RIPS
[21] RIPS, two web application provides better results than

vulnerability detection tools

RIPS

Al-Sanea et al.
[22]

Assessed and tested the
security posture of almost
150 websites from different
categories

Found many vulnerabilities
with different levels and that
government websites were
more secure than commercial
websites

Open-source vulnerability

Huang et al
[23]

Discussed web application
vulnerabilities and proposed

Introduced VulScan, a new
vulnerability assessment tool

assessment tools: W3af
and SkipFish
VulScan and OWASP’s

ZAP

Copyright © 2024 1JSECS

International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1124 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools
countermeasures and
pitfalls
Moniruzzaman Studied a technique to Around 64% of evaluated web Source code analysis and
et al. [24] detect vulnerabilities using applications have penetration testing
source code analysis and vulnerabilities
penetration testing
technigues
Sandhya et a/ Highlighted the need to Wireshark tool helps ethical Wireshark
[25] utilize penetration testing hackers to underpin system
and used Wireshark for security
penetration testing
Alazmi and Reviewed the effectiveness The study found that outof 12 Open source and closed
Leon [33] of frequently used web study, most of the evaluations source.
application vulnerability tested only two of the OWASP
scanners. top ten wvulnerability types.

And only one work evaluated
six of OWASP top ten
vulnerability types
Shahid et al A number of application The paper found up that ZAP Open source and closed
[34] vulnerability assessment has a higher vulnerability source, specifically;
tools were surveyed and detection as compared to OWASP-ZAP, Acunetix,
evaluated based on their Acunetix and NetSparker. and NetSparker
capabilities, strength and
weaknesses.

Previous research has revealed achievements in understanding and addressing web application
vulnerabilities, including identifying common vulnerabilities such as SQL Injection, Cross-Site Scripting (XSS),
and authentication vulnerabilities. Several tools and techniques, both manual and automated, have been tried
to assess their ability to find and fix these vulnerabilities. However, there is still a gap in the integration
between manual and automated testing methods, and there is not enough research on the comparison of
open-source vulnerability scanning tools. By proposing a more flexible Test Administration Hybridization and
Adaptation (tHAd) method than traditional assessment, it will result in more secure web applications by
introducing a better testing method and smarter tool usage. Therefore, by making this study a strong
foundation for developing a more flexible and effective vulnerability management strategy to date.

5. Conclusion and Future Work

Making a web application secure and finding the vulnerabilities available in a web application is a tough
process and needs proper planning and care. Threats for integrity and confidentiality of sensitive data in web
applications are increasing day by day. According to OWASP, SQL Injections, Broken Authentication and
Sensitive data exposure are the most frequent attacks on web applications. As the attacks are getting complex
day by day, it is an important factor that companies, developers and administrators educate themselves on
the serious risk that they are facing. The study makes a significant contribution to web application security by
evaluating high-risk vulnerabilities, particularly those identified in the OWASP Top 10. It also provides practical
countermeasures and compares them with widely used open-source vulnerability assessment tools like OWASP
ZAP and W3AF to assess their real-world effectiveness. Using parameterized queries, securing session
management, and routinely deploying software patches are important suggestions. In addition, the study
recommends using automated techniques in conjunction with manual testing to cover a wider range of
potential vulnerabilities, particularly in more complex systems.

Most of the vulnerability are preventable by securing the respective web server like keeping all libraries,
plug-ins, database software, frameworks updated with latest security patches. Additionally, the developers
should also focus on the possible loopholes and handling methods in development time. The study makes it
abundantly clear for practitioners that to safeguard web applications, multi-layered security techniques must
be put in place together with regular vulnerability assessments. As Alzahrani et a/. [5] found out that “some
vulnerabilities, such as Cross- Site Scripting, and SQL injection have occurred due to design errors, while
information leakage and insufficient transport layer protection are often caused by insufficient administration”.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

1125 Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

They have recommended the usage of tools to prevent these vulnerabilities. As the attackers are trying to find
new methods to bypass the security of web applications, every day new vulnerabilities are added to the list.
Therefore, the administrators should be aware of security testing skills and techniques which may be required
during the system lifecycle. The study emphasizes that multi-layered security techniques, combined with
regular vulnerability assessments, are essential for safeguarding web applications.

In order to choose an appropriate tool which is affordable to most of the organizations, in this document
a number of top open-source vulnerability scanners which are developed using highly secure and advanced
technologies are discussed, to detect maximum number of vulnerabilities with minim cost and less effort. As
the modern web applications are rapidly growing, the traditional vulnerability assessment methods might not
be sufficient. Therefore, as a future work researcher, I would like to explore and evaluate the potential use of
different techniques in machine learning (ML) which can provide effective mechanisms to identify and classify
different web application vulnerabilities based on their severity.

References
[1] ASM Technologies Ltd. (2017). CEBIT - Introduction to Cyber Security. ASM Technologies Ltd.

[2] Curphey, M., & Arawo, R. (2006). Web application security assessment tools. JEEE Security &
Privacy, 44), 32-41. https://doi.org/10.1109/MSP.2006.108.

[3] Positive Technologies. (2019). Web application vulnerabilities: Statistics for 2018. Positive Technologies.

[4] Alzahrani, A., Algazzaz, A., Zhu, Y., Fu, H., & Almashfi, N. (2017, May). Web application security tools
analysis. In 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee
international conference on high performance and smart computing (hpsc), and ieee international
conference on intelligent data and security (ids) (pp. 237-242). IEEE.
https://doi.org/10.1109/BigDataSecurity.2017.47.

[5] Revathy, P., & Mukesh, R. (2017, December). Analysis of big data security practices. In 2017 3rd
International Conference on Applied and Theoretical Computing and Communication Technology
(iICATccT) (pp. 264-267). IEEE. https://doi.org/10.1109/ICATCCT.2017.8389145.

[6] Open Web Application Security Project (OWASP). (2019). OWASP Top Ten Project. Retrieved June 2,
2019, from https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

[7] Nagpure, S., & Kurkure, S. (2017, August). Vulnerability assessment and penetration testing of web
application. In 2017 International Conference on Computing, Communication, Control and Automation
(ICCUBEA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCUBEA.2017.8463920.

[8] Patel, K. (2019, April). A survey on vulnerability assessment & penetration testing for secure
communication. In 2019 3rd International Conference on Trends in Electronics and Informatics
(ICOEI) (pp. 320-325). IEEE. https://doi.org/10.1109/ICOEI.2019.8862767.

[9] Portswigger. (2019). XML external entity (XXE) injection. Retrieved June 2019, from
https://portswigger.net/web-security/xxe

[10] Blazquez, D. (2019). Broken access control. Retrieved November 20, 2019, from
https://hdivsecurity.com/owasp-broken-access-control

[11] Blazquez, D. (2019). Security misconfiguration. Retrieved November 20, 2019, from
https://hdivsecurity.com/owasp-security-misconfiguration

[12] Acunetix. (2019). Types of XSS: Stored XSS, reflected XSS, and DOM-based XSS. Retrieved November
2019, from https://www.acunetix.com/websitesecurity/xss/

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

https://portswigger.net/web-security/xxe
https://hdivsecurity.com/owasp-broken-access-control
https://hdivsecurity.com/owasp-security-misconfiguration
https://www.acunetix.com/websitesecurity/xss/

1126

Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Hack2Secure. (2018). Insufficient logging and monitoring: A brief walk through. Retrieved January 27,
2018, from https://www.hack2secure.com

Suteva, N., Zlatkovski, D. D., & Mileva, A. (2013). Evaluation and testing of several free/open-source
web vulnerability scanners. 7he 10th Conference for Informatics and Information Technology (CIIT
2013), Macedonia.

Sarosys LLC. (2017). Arachni scanner. Retrieved December 19, 2019, from https://www.arachni-
scanner.com

G., S. (2018). Skipfish — Web application security scanner for XSS, SQL injection, shell injection.
Retrieved December 22, 2019, from https://gbhackers.com/skipfish-web-application-security-scanner/

Surribas, N. (2019). The web-application vulnerability scanner. Retrieved September 4, 2019, from
https://wapiti.sourceforge.io

Mehra, D. (2018). How to start with Vega: The web security scanner? Retrieved February 5, 2018, from
https://blog.knoldus.com/start-vega-web-security-scanner/

Dua, M., & Singh, H. (2017, October). Detection & prevention of website vulnerabilities: Current scenario
and future trends. In 2017 2nd International Conference on Communication and Electronics Systems
(ICCES) (pp. 429-435). IEEE. https://doi.org/10.1109/CESYS.2017.8321315.

Singh, H., & Dua, M. (2018, July). Website attacks: Challenges and preventive methodologies. In 2018
International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 381-387).
IEEE. https://doi.org/10.1109/ICIRCA.2018.8597259.

Tyagi, S., & Kumar, K. (2018, December). Evaluation of static web vulnerability analysis tools. In 2018
Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 1-6). IEEE.
https://doi.org/10.1109/PDGC.2018.8745996.

Al-Sanea, M. S., & Al-Daraiseh, A. A. (2015, November). Security evaluation of Saudi Arabia's websites
using open source tools. In 2015 First International Conference on Anti-Cybercrime (ICACC) (pp. 1-5).
IEEE. https://doi.org/10.1109/Anti-Cybercrime.2015.7351928.

Huang, H. C., Zhang, Z. K., Cheng, H. W., & Shieh, S. W. (2017). Web application security: Threats,
countermeasures, and pitfalls. Computer, 56), 81-85. https://doi.org/10.1109/MC.2017.183

Moniruzzaman, M., Chowdhury, F., & Ferdous, M. S. (2019, February). Measuring vulnerabilities of
bangladeshi websites. In 2019 International Conference on Electrical, Computer and Communication
Engineering (ECCE) (pp. 1-7). IEEE. https://doi.org/10.1109/ECACE.2019.8679426.

Sandhya, S., Purkayastha, S., Joshua, E., & Deep, A. (2017, January). Assessment of website security
by penetration testing using Wireshark. In 2017 4th International Conference on Advanced Computing
and Communication Systems (ICACCS) (pp. 1-4). IEEE. https://doi.org/10.1109/ICACCS.2017.8014711.

Pranathi, K., Kranthi, S., Srisaila, A., & Madhavilatha, P. (2018, March). Attacks on web application
caused by cross site scripting. In 2018 Second International Conference on Electronics, Communication
and Aerospace Technology (ICECA) (pp. 1754-1759). IEEE.
https://doi.org/10.1109/ICECA.2018.8474765.

Efendi, A. M., Ibrahim, Z., Zawawi, M. A., Rahim, F. A., Pahri, N. M., & Ismail, A. (2019, May). A survey
on deception techniques for securing web application. In 2019 IEEE 5th Int/ Conference on Big Data
Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart
Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS) (pp. 328-331). IEEE.
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2019.00066.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

https://www.hack2secure.com/
https://www.arachni-scanner.com/
https://www.arachni-scanner.com/
https://wapiti.sourceforge.io/
https://blog.knoldus.com/start-vega-web-security-scanner/

1127

Identifying and Mitigating Web Application Vulnerabilities: A Comparative Study of Countermeasures and Tools

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Yadav, D., Gupta, D., Singh, D., Kumar, D., & Sharma, U. (2018, December). Vulnerabilities and security
of web applications. In 2018 4th International Conference on Computing Communication and
Automation (ICCCA) (pp. 1-5). IEEE. https://doi.org/10.1109/CCAA.2018.8777558.

Gillman, D., Lin, Y., Maggs, B., & Sitaraman, R. K. (2015). Protecting websites from attack with secure
delivery networks. Computer, 484), 26-34. https://doi.org/10.1109/MC.2015.116

Alenezi, M., & Javed, Y. (2016, September). Open source web application security: A static analysis
approach. In 2016 International Conference on Engineering & MIS (ICEMIS) (pp. 1-5). IEEE.
https://doi.org/10.1109/ICEMIS.2016.7745369.

Navabud, P., & Chen, C. L. (2018, July). Analyzing the web mail using wireshark. In 2018 14th
international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-
FSKD) (pp. 1237-1239). IEEE. https://doi.org/10.1109/FSKD.2018.8686871.

Shrivastava, A., Choudhary, S., & Kumar, A. (2016, October). XSS vulnerability assessment and
prevention in web application. In 2016 2nd International Conference on Next Generation Computing
Technologies (NGCT) (pp. 850-853). IEEE. https://doi.org/10.1109/NGCT.2016.7877529.

Alazmi, S., & De Leon, D. C. (2022). A systematic literature review on the characteristics and
effectiveness of web application vulnerability scanners. JEEE Access, 10, 33200-33219.
https://doi.org/10.1109/ACCESS.2022.3163023

Shahid, J., Hameed, M. K., Javed, I. T., Qureshi, K. N., Ali, M., & Crespi, N. (2022). A comparative study
of web application security parameters: Current trends and future directions. Applied Sciences, 128),
4077. https://doi.org/10.3390/app12084077.

Haque, A., et al. (2023). Web applications vulnerability analysis and prevention. Retrieved from
https://www.researchgate.net/publication/381303883_WEB_Applications_Vulnerability_Analysis_and_
prevention.

Copyright © 2024 1JSECS International Journal Software Engineering and Computer Science (IJSECS), 4 (3) 2024, 1109-1127

https://www.researchgate.net/publication/381303883_WEB_Applications_Vulnerability_Analysis_and_prevention
https://www.researchgate.net/publication/381303883_WEB_Applications_Vulnerability_Analysis_and_prevention

