Published: 2025-02-09
Analysis of Consumer Purchasing Patterns Using the Apriori Algorithm on Sales Transaction Data from Anak Panah Kopi Salatiga
DOI: 10.35870/ijsecs.v5i1.3275
Yoga Candra Adi Pratama, Christine Dewi
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Anak Panah Coffee is a café located in Salatiga, offering a menu of 12 items. To enhance consumer satisfaction, the management of Anak Panah Coffee has decided to implement a marketing strategy for promoting its products. Given the challenges faced by Anak Panah Coffee, this study aims to analyze consumer preferences to provide benefits both to the business and its customers. This research utilizes the Apriori algorithm, based on field data that can be calculated objectively. The results of applying the Apriori algorithm reveal two association rules with a minimum support of 30% and a minimum confidence of 60%. The first rule indicates that customers who purchase Sunny Go Coffee are likely to also purchase Mushroom Crispy, with a support value of 50% and confidence of 56%. The second rule suggests that customers who buy Crispy Mushrooms are likely to also purchase Sunny Go Coffee, with a support value of 50% and a confidence of 71%.
Keywords
Anak Panah Coffee ; Marketing Strategy ; Apriori Algorithm
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 5 No. 1 (2025)
-
Section: Articles
-
Published: %750 %e, %2025
-
License: CC BY 4.0
-
Copyright: © 2025 Authors
-
DOI: 10.35870/ijsecs.v5i1.3275
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Amanda, A. I., Setiawan, D., & Trisnawati, L. (2023). Penerapan Algoritma Apriori Dalam Menganalisis Pola Minat Beli Konsumen Di Coffee Shop. JEKIN - Jurnal Teknik Informatika, 3(1), 25–32. https://doi.org/10.58794/jekin.v3i1.483
-
Gumilang, J. R. (2021). Implementasi Algoritma Apriori Untuk Analisis Penjualan Konter Berbasis Web. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 1(2), 226–233. https://doi.org/10.33365/jatika.v1i2.61
-
Iswandi, P., Permana, I., & Salisah, F. N. (2020). Penerapan Aloritma Apriori Pada Data Transaksi Penjualan Hypermart Xyz Lampung Untuk Penentuan Tata Letak Barang. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 6(1), 70. https://doi.org/10.24014/rmsi.v6i1.7613
-
Naldy, E. T., & Andri, A. (2021). Penerapan Data Mining Untuk Analisis Daftar Pembelian Konsumen Dengan Menggunakan Algoritma Apriori Pada Transaksi Penjualan Toko Bangunan MDN. Jurnal Nasional Ilmu Komputer, 2(2), 89–101. https://doi.org/10.47747/jurnalnik.v2i2.525
-
Nawangsih, I., & Purnamasari, P. (2023). Analisis Pola Pembelian Produk Kecantikan Menggunakan Algoritma Apriori. Jurnal Teknologi Informatika Dan Komputer, 9(1), 537–546. https://doi.org/10.37012/jtik.v9i1.1614
-
-
Novianti, A., & Elisa, E. (2020). Penentuan Aturan Asosiasi Pola Pembelian Pada Minimarket Dengan Algoritma Apriori. Building of Informatics, Technology and Science (BITS), 2(1), 64-70. https://doi.org/10.47065/bits.v2i1.300.
-
Nurrahmi, H., & Sukma, G. (2020). Analisa Dan Perancangan Peminatan Pemilihan Makanan Dan Minuman Dengan Menggunakan Algoritma Apriori. Jurnal Sistem Informasi Bisnis (JUNSIBI), 1(1), 38–43. https://doi.org/10.55122/junsibi.v1i1.106
-
Rahmi, A. N., & Mikola, Y. A. (2021). Implementasi Algoritma Apriori Untuk Menentukan Pola Pembelian Pada Customer (Studi Kasus : Toko Bakoel Sembako). Information System Journal, 4(1), 14–19. Retrieved from https://jurnal.amikom.ac.id/index.php/infos/article/view/561
-
Rosmayati, I., Wahyuningsih, W., Harahap, E. F., & Hanifah, H. S. (2023). Implementasi Data Mining pada Penjualan Kopi Menggunakan Algoritma Apriori. Jurnal Algoritma, 20(1), 99–107. https://doi.org/10.33364/algoritma/v.20-1.1259
-
Saragih, S. D. (2021). Analisa Pola Penjualan Alat Pancing Menggunakan Algoritma Apriori. Jurnal Mahasiswa Aplikasi Teknologi Komputer Dan Informasi, 3(3), 78–83. Retrieved from https://ejournal.pelitaindonesia.ac.id/ojs32/index.php/jmapteksi/article/view/3340
-
Sigalingging, I. H., & Harman, R. (2020). Analisis Pola Pembelian Produk Menggunakan Algoritma Apriori Iska. Building of Informatics, Technology and Science (BITS), 2(1), 17–22. Retrieved from https://ejurnal.seminar-id.com/index.php/bits/article/view/285
-
Styawati, N. A., & Nur, A. K. (2021). Analisis Pola Transaksi Pelanggan Menggunakan Algoritme Apriori. Jurnal Sains Komputer & Informatika, 5(2), 619–626. Retrieved from https://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/362
-
Tulodo, R. P., Wahyudin, W., & Syafii, M. A. (2021). Peningkatan Penjualan Oriental Cafe Menggunakan Algoritma Apriori. Jurnal Pendidikan Dan Kewirausahaan, 9(1), 284–296. Retrieved from https://journalstkippgrisitubondo.ac.id/index.php/PKWU/article/view/236
-
Ulfha, N. F., & Amin, R. (2020). Implementasi data mining untuk mengetahui pola pembelian obat menggunakan algoritma apriori. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 17(2), 396-402. https://doi.org/10.33751/komputasi.v17i2.2156
-
Patil, E. (2023). Enhancing retail strategies through apriori, eclat & FP growth algorithms in market basket analysis. International Journal on Recent and Innovation Trends in Computing and Communication, 11(9), 3831-3838. https://doi.org/10.17762/ijritcc.v11i9.9637
-
Mujianto, A. H., Mashuri, C., Andriani, A., & Jayanti, F. D. (2019). Consumer customs analysis using the association rule and apriori algorithm for determining sales strategies in retail central. In E3S Web of Conferences (Vol. 125, p. 23003). EDP Sciences. https://doi.org/10.1051/e3sconf/201912523003
-
Hermawan, A., Wicaksono, B., Ahmadjayadi, T., Prakasa, B. S., & Aruan, J. D. (2024). Implementasi Algoritma Apriori pada Market Basket Analysis terhadap Data Penjualan Produk Supermarket. Algoritma: Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan Angkasa, 2(5), 95-105. https://doi.org/10.62383/algoritma.v2i5.137
-
Raihan, M., & Sutisna. (2024). Analisis Perbandingan Algoritma Apriori dan FP-Growth untuk Menentukan Strategi Penjualan Pada Maestro Jakarta Cafe & Space. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 5(3), 3147-3157. https://doi.org/10.35870/jimik.v5i3.994
-
Sari, R., Helmy, N., & Alexander, A. D. (2024). Determining Sales Patterns Using the Apriori Algorithm: A Case Study of Unlocked Cafe's Website Applications. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 12(1), 189-200. https://doi.org/10.33558/piksel.v12i1.8908
-
Dianti, R. N., & Zeniarja, J. (2024). IMPLEMENTASI ALGORITMA APRIORI UNTUK ANALISIS POLA PEMBELIAN KONSUMEN PADA TOSERBA YUSUF SEMARANG. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(2), 1013-1021. https://doi.org/10.29100/jipi.v9i2.5421
-
Kurniawan, A., & Suwaryo, N. (2023). Analysis of the Apriori Algorithm for Enhancing Retail Product Staple Sales Recommendations. International Journal Software Engineering and Computer Science (IJSECS), 3(3), 449–456. https://doi.org/10.35870/ijsecs.v3i3.1877
-
Hasugian, A. H., Hasibuan, M. S., & Sofyan, S. N. (2023). Apriori to Analyze Sales Patterns of Building Tools and Materials. IT Journal Research and Development, 7(2), 198-208. https://doi.org/10.25299/itjrd.2023.10544
-
SyahruRomadhon, M. and Kodar, A. (2020). Implementasi metode market basket analysis (mba) menggunakan algoritma apriori dalam transaksi penjualan (studi kasus: kafe ruang temu). Jurnal Saintekom, 10(2), 138. https://doi.org/10.33020/saintekom.v10i2.137
-
Zhou, X., Wan, F., Zhang, Y., & Qiu, S. (2024). Design and optimization of an intelligent recommendation system for instant retail services based on machine learning. Innovative Design and Intelligent Manufacturing. https://doi.org/10.3233/FAIA241098

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.