Published: 2024-12-01
Sentiment Analysis of Kredivo App Users Using the K-Nearest Neighbor Algorithm
DOI: 10.35870/ijsecs.v4i3.3056
Saepudin, Sutisna
- Saepudin: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Sutisna: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
In today's technological era, the internet has played an important role in all aspects of human life. This is also what drives various mobile applications to develop very rapidly. Kredivo is an instant credit solution that provides convenience to buy now pay later in a 1-month tenor or 3-month installment tenor with 0% interest. In addition, Kredivo is not only used for shopping purposes, but borrowers can also make withdrawals in the form of cash. However, not all users are satisfied with the service of the application. and the many comments submitted through the Kredivo application review feature on the Google Play Store. Therefore, in this study, researchers tried to conduct a sentiment analysis of Kredivo application users using the K-Nearest Neighbor algorithm. The purpose of this study was to determine the accuracy value produced by the K-Nearest Neighbor algorithm. From testing 1880 data using the cross-validation model, it was found that reviews containing positive sentiment were 62.55% and containing negative sentiment were 37.45%. Evaluation of the classification results using the Confusion Matrix test obtained an accuracy value of 79.36%, with a recall value of 83.08%, precision of 72.15%, and recall (Specificity) of 73.15%, so it can be concluded that the K-Nearest Neighbor algorithm can classify sentiments well using review data on Kredivo application users
Keywords
Analysis ; Sentiment ; Kredivo ; CRISP-DM ; K-Nearest Neighbors
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 3 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i3.3056
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Saepudin
Information Systems Study Program, Faculty of Computer Science, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Muhammadin, A., & Sobari, I. A. (2021). Analisis sentimen pada ulasan aplikasi Kredivo dengan algoritma SVM dan NBC. Reputasi: Jurnal Rekayasa Perangkat Lunak, 2(2), 85-91. https://doi.org/10.31294/reputasi.v2i2.785
-
Ramadhina, A. F. L., & Sofian, E. (2024). Perbandingan metode K-Nearest Neighbor dan pohon keputusan dalam analisis sentimen data ulasan aplikasi pinjaman online berizin OJK di Google Play. Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), 7(2), 115-124. https://doi.org/10.47970/siskom-kb.v7i1.543
-
Saifurridho, M., Martanto, M., & Hayati, U. (2024). Analisis algoritma K-Nearest Neighbor terhadap sentimen pengguna aplikasi Shopee. Jurnal Informatika Terpadu, 10(1), 21-26. https://doi.org/10.54914/jit.v10i1.1054
-
Syafrizal, S., Afdal, M., & Novita, R. (2024). Analisis sentimen ulasan aplikasi PLN Mobile menggunakan algoritma Naïve Bayes classifier dan K-Nearest Neighbor. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 10-19. https://doi.org/10.57152/malcom.v4i1.983
-
Agustin, A., Andrean, S., Susanti, S., Rahmiati, R., & Hamdani, H. (2024). Review aplikasi Kredivo menggunakan analisis sentimen dengan algoritma Support Vector Machine. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 9(1), 39-49. https://doi.org/10.36341/rabit.v9i1.4107
-
Lestari, D. A., & Mahdiana, D. (2021). Penerapan algoritma K-Nearest Neighbor pada Twitter untuk analisis sentimen masyarakat terhadap larangan mudik 2021. Informatik: Jurnal Ilmu Komputer, 17(2), 123-131. https://doi.org/10.52958/iftk.v17i2.3629
-
Ahmad, K. (2023). Analisis sentimen pinjaman online Akulaku dan Kredivo dengan metode Support Vector Machine (SVM). Journal of Mandalika Literature, 4(4), 323-332. https://doi.org/10.36312/jml.v4i4.2045
-
Alhaqq, R. I., Putra, I. M. K., & Ruldeviyani, Y. (2022). Analisis sentimen terhadap penggunaan aplikasi MySAPK BKN di Google Play Store. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 11(2). https://doi.org/10.22146/jnteti.v11i2.3528
-
El Firdaus, M. F., Nurfaizah, N., & Sarmini, S. (2022). Analisis sentimen Tokopedia pada ulasan di Google Playstore menggunakan algoritma Naïve Bayes classifier dan K-Nearest Neighbor. JURIKOM (Jurnal Riset Komputer), 9(5), 1329-1336. https://doi.org/10.30865/jurikom.v9i5.4774
-
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis sentimen aplikasi Ruang Guru di Twitter menggunakan algoritma klasifikasi. Jurnal Teknoinfo, 14(2), 115-123. https://doi.org/10.33365/jti.v14i2.679
-
Salsabila, S. N., Sari, B. N., & Mayasari, R. (2023). Klasifikasi ulasan pengguna aplikasi Discord menggunakan metode Information Gain dan Naïve Bayes classifier. INFOTECH Journal, 9(2), 383-392. https://doi.org/10.31949/infotech.v9i2.6277
-
Rahayu, S., MZ, Y., Bororing, J. E., & Hadiyat, R. (2022). Implementasi metode K-Nearest Neighbor (K-NN) untuk analisis sentimen kepuasan pengguna aplikasi teknologi finansial FLIP. Edumatic: Jurnal Pendidik. Inform., 6(1), 98-106. https://doi.org/10.29408/edumatic.v6i1.5433
-
Kusuma, I. H., & Cahyono, N. (2023). Analisis sentimen masyarakat terhadap penggunaan e-commerce menggunakan algoritma K-Nearest Neighbor. Jurnal Informatika: Jurnal Pengembangan IT, 8(3), 302-307. https://doi.org/10.30591/jpit.v8i3.5734
-
Muttaqin, M. N., & Kharisudin, I. (2021). Analisis sentimen aplikasi Gojek menggunakan Support Vector Machine dan K-Nearest Neighbor. UNNES Journal of Mathematics, 10(2), 22-27. https://doi.org/10.15294/ujm.v10i2.48474
-
Indrayuni, E., Nurhadi, A., & Kristiyanti, D. A. (2021). Implementasi algoritma Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk analisis sentimen aplikasi Halodoc. Faktor Exacta, 14(2), 64-71. https://doi.org/10.30998/faktorexacta.v14i2.9697
-
Firdaus, A. (2022). Aplikasi algoritma K-Nearest Neighbor pada analisis sentimen Omicron COVID-19. Jurnal Riset Statistika, 2(2), 85-92. https://doi.org/10.29313/jrs.v2i2.1148
-
-
-
Apriani, R., & Gustian, D. (2019). Analisis sentimen dengan Naïve Bayes terhadap komentar aplikasi Tokopedia. Jurnal Rekayasa Teknologi Nusa Putra, 6(1), 54-62. https://doi.org/10.52005/rekayasa.v6i1.86
-

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.