Published: 2024-04-10
Optimization of Product Placement on E-commerce Platforms with K-Means Clustering to Improve User Experience
DOI: 10.35870/ijsecs.v4i1.2328
Achmad Ridwan, Sandi Setiadi, Rizky Maulana
- Achmad Ridwan: Universitas Muhammadiyah Kudus , Indonesia
- Sandi Setiadi: Universitas Linggabuana PGRI Sukabumi , Indonesia
- Rizky Maulana: Universitas Linggabuana PGRI Sukabumi , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
This study delves into product placement strategies on E-commerce platforms using K-Means Clustering analysis. Employing an experimental methodology, data about products and user preferences were gathered to delineate product and user clusters. The K-Means Clustering analysis yielded three primary product clusters and four user preference clusters. These findings hold significant practical implications, empowering E-commerce platforms to refine user experience personalization, streamline sales efficiency, and bolster overall business performance. Platforms can positively influence sales conversion rates and user satisfaction by implementing targeted and adaptable product placement strategies. This research contributes not only to the theoretical comprehension of product placement in E-commerce but also furnishes actionable insights for stakeholders to optimize platform operations and deliver an enriched online shopping experience.
Keywords
E-commerce ; K-Means Clustering ; Product Placement ; User Experience ; Marketing Strategy ; User Preferences
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 1 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i1.2328
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Achmad Ridwan
Information Systems Study Program, Universitas Muhammadiyah Kudus, Kudus Regency, Central Java Province, Indonesia
Sandi Setiadi
Management Study Program, Faculty of Social Economics, Universitas Linggabuana PGRI Sukabumi, Sukabumi City, West Java Province, Indonesia
-
Habyba, A. N., Djatna, T., & Anggraeni, E. (2021). Positioning e-commerce produk ukm berdasarkan kebutuhan afektif pengguna. Krea-Tif, 9(1), 21. https://doi.org/10.32832/kreatif.v9i1.3590
-
Sugianto, N., & Utama, F. P. (2021). E-commerce untuk optimalisasi pemasaran produk di era digital bagi usaha mikro kelompok tani pangestu rakyat desa barumanis kabupaten rejang lebong. Jurnal Pengabdian Kepada Masyarakat, 27(1), 14. https://doi.org/10.24114/jpkm.v27i1.23656
-
Pratomo, A., Najwaini, E., Irawan, A., & Risa, M. (2019). Optimasi e-commerce dengan penerapan teknik seo (search engine optimization) untuk meningkatkan penjualan pada ukm nida sasirangan. Jurnal IMPACT: Implementation and Action, 1(1), 35. https://doi.org/10.31961/impact.v1i1.615
-
Alma'arif, E., Utami, E., & Wibowo, F. W. (2021). Implementasi algoritma apriori untuk rekomendasi produk pada toko online. Creative Information Technology Journal, 7(1), 63. https://doi.org/10.24076/citec.2020v7i1.241
-
Istiqomah, D. A., Astuti, Y., & Nurjanah, S. (2022). Implementasi algoritma fp-growth dan apriori untuk persediaan produk. Jurnal Informatika Polinema, 8(2), 37-42. https://doi.org/10.33795/jip.v8i2.845
-
Handayani, R. N. (2021). Optimasi algoritma support vector machine untuk analisis sentimen pada ulasan produk tokopedia menggunakan pso. Media Informatika, 20(2), 97-108. https://doi.org/10.37595/mediainfo.v20i2.59
-
Abdillah, L. A. (2019). Analisis aplikasi mobile transportasi online menggunakan user experience questionnaire pada era milenial dan z. Jurnal Sistem Informasi Bisnis, 9(2), 204. https://doi.org/10.21456/vol9iss2pp204-211
-
Yosefanita, G., Hanggara, B. T., & Rokhmawati, R. I. (2022). Analisis perbandingan pengalaman pengguna pada aplikasi investasi dengan menggunakan ux curve (studi pada bibit dan ajaib). Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(7), 1589. https://doi.org/10.25126/jtiik.2022976749
-
Adelin, N. M. (2024). Implementasi progressive web apps (pwa) untuk meningkatkan kinerja dan performa situs maritimepreneur. Jurnal Informatika Dan Teknik Elektro Terapan, 12(1). https://doi.org/10.23960/jitet.v12i1.3904
-
Erfin, M. M., Mufiddin, R., & Zaman, S. (2022). Optimasi konten pemasaran dan platform online dengan teknik search engine optimization. Jurnal Teknik Informatika Dan Sistem Informasi, 8(3). https://doi.org/10.28932/jutisi.v8i3.5468
-
Prasetyo, A. N., & Yusran, H. L. (2022). Pengaruh e-service quality dan e-trust terhadap repurchase intention melalui e-satisfaction pada pengguna e-commerce. Ijd-Demos, 4(1). https://doi.org/10.37950/ijd.v4i1.193
-
Zhang, D., & Huang, M. (2022). A Precision Marketing Strategy of e-Commerce Platform Based on Consumer Behavior Analysis in the Era of Big Data. Mathematical Problems in Engineering. http://doi.org/10.1155/2022/8580561
-
Seimahuira, S. (2021). IMPLEMENTASI DATAMINING DALAM MENENTUKAN DESTINASI UNGGULAN BERDASARKAN ONLINE REVIEWS TRIPADVISOR MENGGUNAKAN ALGORITMA K-MEANS. TJI, 12, 53-58. http://doi.org/10.31602/TJI.V12I1.4229
-
Addagarla, S. K., & Amalanathan, A. (2020). Probabilistic Unsupervised Machine Learning Approach for a Similar Image Recommender System for E-Commerce. Symmetry, 12, 1783. http://doi.org/10.3390/sym12111783
-
Vijilesh, V., Harini, A., Dharshini, M. H., & Priyadharshini, R. (2021). Customer Segmentation Using Machine Learning. Elementary Education Online. http://doi.org/10.17051/ilkonline.2021.03.335
-
Nugraha, A., Nurdiawan, O., & Dwilestari, G. (2022). PENERAPAN DATA MINING METODE K-MEANS CLUSTERING UNTUK ANALISA PENJUALAN PADA TOKO YANA SPORT. JATI (Jurnal Mahasiswa Teknik Informatika). http://doi.org/10.36040/jati.v6i2.5755
-
Du, X., Liu, B., & Zhang, J. (2019). Application of Business Intelligence Based on Big Data in E-commerce Data Analysis. Journal of Physics: Conference Series, 1395. http://doi.org/10.1088/1742-6596/1395/1/012011
-
Shen, B. (2021). E-commerce Customer Segmentation via Unsupervised Machine Learning. The 2nd International Conference on Computing and Data Science. http://doi.org/10.1145/3448734.3450775

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.