Published: 2024-04-20
Application of the K-Medoids Algorithm in Clustering PAM Customers Based on Provinces in Indonesia
DOI: 10.35870/ijsecs.v4i1.2229
Nufaisa Almazar, Mesra Betty Yel
- Nufaisa Almazar: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
- Mesra Betty Yel: Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Clean water is a basic need that is very important for human life. In Indonesia, many clean water companies supply water for community needs. Indonesia's government-owned clean water company has many customers spread across various provinces. This research aims to apply the k-medoids algorithm in clustering PAM customers based on provinces in Indonesia to determine which provinces are included in the low, medium, and high-level clusters of PAM customers. The data used in this research is on the number of PAM customers, the amount of water distributed, and the value of the water distributed from 1998 to 2021 to 34 provinces in Indonesia. This research obtained 3 clusters, namely low, medium, and high-level clusters determined by the number of PAM customers, the amount of water distributed, and the value of the water distributed in each province. Cluster 1 (C1) is a low-level cluster that obtained results from 19 provinces, Cluster 2 (C2) is a medium-level cluster that obtained results from 11 provinces, and Cluster 3 (C3) is a high-level cluster that obtained results from 4 provinces. And get a k-medoids cluster validation value of 0.014846718. In this way, it is hoped that the government can identify areas in each province that require improvement or improvement in making appropriate decisions regarding clean water resources to provide better services to customers
Keywords
K-Medoids Algorithm ; PAM Customer Clusterization ; PAM Water Services
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 1 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i1.2229
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Nufaisa Almazar
Informatics Engineering Study Program, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika, East Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Simanjuntak, D. S. M., Gunawan, I., Sumarno, S., Poningsih, P., & Sari, I. P. (2023). Penerapan Algoritma K-Medoids Untuk Pengelompokkan Pengangguran Umur 25 tahun Keatas Di Sumatera Utara. J. Krisnadana, 2(2). https://doi.org/10.58982/krisnadana.v2i2.264
-
Anggarwati, D., Nurdiawan, O., Ali, I., & Kurnia, D. A. (2021). Penerapan Algoritma K-Means Dalam Prediksi Penjualan Karoseri. J. Data Sci. Inform., 1(2), 58–62. [Online]. Available: https://www.publikasi.bigdatascience.id/index.php/jdsi/article/view/32/15
-
-
Simanjuntak, A. D. (2022). Data Mining Kepuasan Pelanggan Terhadap Pelayanan Pdam Menggunakan Metode Clustering. Semin. Nas. Inform., 6(3). [Online]. Available: http://jurnal.kaputama.ac.id/index.php/SENATIKA/article/view/947/0%0Ahttp://jurnal.kaputama.ac.id/index.php/SENATIKA/article/viewFile/947/672
-
Fajriana, F. (2021). Analisis Algoritma K-Medoids pada Sistem Klasterisasi Produksi Perikanan Tangkap Kabupaten Aceh Utara. J. Edukasi dan Penelit. Inform., 7(2), 263. https://doi.org/10.26418/jp.v7i2.47795
-
-
Ula, M., Maulana, R., & Ilhadi, V. (2023). Terbit online pada laman web jurnal: https://ejurnalunsam.id/index.php/jicom/ Penerapan KNN Penentuan Pelanggan Baru PDAM dan Clustering K-Means Berdasarkan Wilayah, 04(01), 1–6. [Online]. Available: https://ejurnalunsam.id/index.php/jicom/.
-
Triyandana, G., Putri, L. A., & Umaidah, Y. (2022). Penerapan Data Mining Pengelompokan Menu Makanan dan Minuman Berdasarkan Tingkat Penjualan Menggunakan Metode K-Means. J. Appl. Informatics Comput., 6(1), 40–46. https://doi.org/10.30871/jaic.v6i1.3824
-
Pahlawan, M. R., Nurlia, N., Laba, A. R., Pakki, E., & Hardiyono, H. (2019). Pengaruh Kualitas Produk Dan Kualitas Pelayanan Terhadap Peningkatan Kepuasan Dan Loyalitas Pelanggan Perusahaan Daerah Air Minum (Pdam) Kota Makassar. J. Appl. Bus. Adm., 3(2), 228–244. https://doi.org/10.30871/jaba.v3i2.1560
-
Sinaga, L., Ahmad, A., & Safii, M. (2019). Penerapan Data Mining Pada Jumlah Pelanggan Perusahaan Air Bersih Menurut Provinsi Menggunakan Metode K-Means Clustering. J. Resist. (Rekayasa Sist. Komputer), 2(2), 119–125. https://doi.org/10.31598/jurnalresistor.v2i2.418.
-
Yaumi, A. S., Zulfiqkar, Z., & Nugroho, A. (2020). Klasterisasi Karakter Konsumen Terhadap Kecenderungan Pemilihan Produk Menggunakan K-Means. JOINTECS (Journal Inf. Technol. Comput. Sci., 5(3), 195. https://doi.org/10.31328/jointecs.v5i3.1523.
-
Fauzan, M. F., Purnamasari, A. I., & Dwilestari, G. (2023). Penerapan Data Mining Untuk Menganalisis Penjualan Air Minum Dalam Kemasan Selama Masa Pandemi Covid-19. JATI (Jurnal Mhs. Tek. Inform., 7(1), 700–706. https://doi.org/10.36040/jati.v7i1.6290.
-
Ningsih, S. R., Damanik, I. S., Windarto, A. P., Tambunan, H. S., Jalaluddin, J., & Wanto, A. (2019). Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi. Pros. Semin. Nas. Ris. Inf. Sci., 1(September), 721. https://doi.org/10.30645/senaris.v1i0.78.
-
Meizar, A., Fahrozi, W., Indra, E., & Saputra, M. (2022). Analisis Trend Moment Pada Datamining Forecasting Dalam Memprediksi Jumlah Persediaan Obat Herbal. J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), 5(2), 103–106. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2452.
-
Siregar, A. R., Andani, S. R., & Saputra, W. (2020). Clustering Pada Pelanggan Perusahaan Air Bersih Dengan Algoritma K-Means. BRAHMANA J. Penerapan Kecerdasan Buatan, 1(1), 7–14. https://doi.org/10.30645/brahmana.v1i1.2.
-
-
Andini, A. D., & Arifin, T. (2020). Implementasi Algoritma K-Medoids Untuk Klasterisasi Data Penyakit Pasien Di Rsud Kota Bandung. J. Responsif Ris. Sains dan Inform., 2(2), 128–138. https://doi.org/10.51977/jti.v2i2.247.
-
-
Kairupan, S. B., Mokat, J. E., & Pakasi, K. M. (2020). Pelayanan Perusahaan Daerah Air Minum dalam Penyediaan Air Bersih di Kecamatan Pasan Kabupaten Minahasa Tenggara. J. Kaji. Kebijak. dan Ilmu Adm. Negara (JURNAL Adm., 1(2), 41–44. https://doi.org/10.36412/jan.v1i2.1636.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.