Published: 2024-04-01
Classification of Potential Tsunami Disaster Due to Earthquakes in Indonesia Based on Machine Learning
DOI: 10.35870/ijsecs.v4i1.2084
Eri Mardiani, Nur Rahmansyah, Sari Ningsih, Dhieka Avrilia Lantana, Nabila Puspita Wulandana, Azzaleya Agashi Lombu, Sisca Budyarti
- Eri Mardiani: Nasional University , Indonesia .
- Nur Rahmansyah: Politeknik Negeri Media Kreatif , Indonesia
- Sari Ningsih: Nasional University , Indonesia .
- Dhieka Avrilia Lantana: Nasional University , Indonesia .
- Nabila Puspita Wulandana: UPN Veteran Jakarta , Indonesia
- Azzaleya Agashi Lombu: UPN Veteran Jakarta , Indonesia
- Sisca Budyarti: UPN Veteran Jakarta , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
Earthquakes and tsunamis pose significant threats to Indonesia due to its unique geological positioning at the convergence of four tectonic plates. This study focuses on classifying the potential occurrence of tsunami disasters following earthquakes using various data mining methods, including k-Nearest Neighbor (kNN), Naïve Bayes, Decision Tree and Ensemble Method, and Linear Regression. The research employs a qualitative approach to systematically understand and describe the context of natural disasters, utilizing both primary and secondary data collection techniques. Performance evaluation metrics such as Area Under the Curve (AUC), Classification Accuracy (CA), F1 Score, Precision, and Recall are utilized to assess the effectiveness of each method in predicting potential tsunami events. The findings reveal that the kNN method exhibits the highest performance, with an AUC of 94.4% and a precision of 82.8%, indicating robust predictive capabilities. However, misclassifications were observed, emphasizing the need for further refinement. Naïve Bayes also shows promising results with an AUC of 84.5% and precision of 78.6%. Decision Tree and Ensemble Method models, such as Random Forest and AdaBoost, demonstrate reasonable performance, with Random Forest achieving the highest AUC of 71.9%. Linear Regression is employed to explore the correlation between earthquake attributes and tsunami occurrence, revealing a weak relationship. Further research integrating advanced modeling approaches and additional earthquake attributes is recommended to enhance the predictive capabilities of tsunami risk assessment models. The study underscores the importance of employing diverse machine learning techniques and evaluating their performance metrics to refine the accuracy of tsunami prediction models, ultimately contributing to practical disaster preparedness and mitigation strategies.
Keywords
Data Mining ; Earthquake ; Tsunami ; Orange Tools ; K-Nearest Neighbor (KNN) Algorithm
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 4 No. 1 (2024)
-
Section: Articles
-
Published: %750 %e, %2024
-
License: CC BY 4.0
-
Copyright: © 2024 Authors
-
DOI: 10.35870/ijsecs.v4i1.2084
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
Eri Mardiani
Informatics Study Program, Faculty of Communication and Information Technology, Universitas Nasional, City of South Jakarta, Special Capital Region of Jakarta, Indonesia
Nur Rahmansyah
Animation Study Program, Politeknik Negeri Media Kreatif, South Jakarta City, Special Capital Region of Jakarta, Indonesia
Sari Ningsih
Information Systems Study Program, Faculty of Communication and Information Technology, Universitas Nasional, City of South Jakarta, Special Capital Region of Jakarta, Indonesia
Dhieka Avrilia Lantana
Digital Business Study Program, Faculty of Economics and Business, Universitas Nasional, City of South Jakarta, Special Capital Region of Jakarta, Indonesia
Nabila Puspita Wulandana
Accounting Study Program, Faculty of Economics and Business, UPN Veteran Jakarta, Central Jakarta City, Special Capital Region of Jakarta, Indonesia
Azzaleya Agashi Lombu
Accounting Study Program, Faculty of Economics and Business, UPN Veteran Jakarta, Central Jakarta City, Special Capital Region of Jakarta, Indonesia
-
Opilah, B. S., Karyadi, B., Johan, H., & Mayub, A. (2023). Model Integrasi Mitigasi Bencana Gempa Bumi pada Konsep Gelombang. Jurnal Pendidikan Fisika, 11(1), 28-39. DOI: http://dx.doi.org/10.24127/jpf.v11i1.6754.
-
Syafitri, Y., Bahtiar, B., & Didik, L. A. (2019). Analisis pergeseran lempeng bumi yang meningkatkan potensi terjadinya gempa bumi di pulau Lombok. Konstan-Jurnal Fisika Dan Pendidikan Fisika, 4(2), 139-146. DOI: https://doi.org/10.20414/konstan.v4i2.43.
-
Hadi, H., Agustina, S., & Subhani, A. (2019). Penguatan kesiapsiagaan stakeholder dalam pengurangan risiko bencana alam gempabumi. Geodika: Jurnal Kajian Ilmu dan Pendidikan Geografi, 3(1), 30-40. DOI: https://doi.org/10.29408/geodika.v3i1.1476.
-
Deswita, D., Yuliharni, S., & Efniyati, N. N. (2023). STUDI KASUS: GAMBARAN KESIAPSIAGAAN REMAJA MENGHADAPI GEMPA BUMI DAN TSUNAMI. Jurnal'Aisyiyah Medika, 8(2). DOI: https://doi.org/10.36729/jam.v8i2.1112.
-
Puspitasari, L., Prastistho, B., & Prasetya, J. D. (2023). MODEL KESIAPSIAGAAN KELUARGA TERHADAP ANCAMAN BAHAYA BENCANA GEMPA BUMI DESA CONDONGCATUR, KAPANEWON DEPOK, KABUPATEN SLEMAN, DI YOGYAKARTA. Indonesian Journal of Environment and Disaster, 2(1), 1-9. DOI: https://doi.org/10.20961/ijed.v2i1.479
-
-
Marutho, D. (2019). Perbandingan Metode Naive Bayes, KNN, Decision Tree Pada Laporan Water Level Jakarta. Jurnal Ilmiah Infokam, 15(2). DOI: https://doi.org/10.53845/infokam.v15i2.175.
-
-
Rahmansyah, N., Muliyani, D., Mardiani, E., & Rahman, A. (2022). Perancangan Sistem Transaksi Berbasis Web pada UKM Pangkas Rambut Tasik. Jurnal Sistem Informasi Bisnis (JUNSIBI), 3(1), 22-31. DOI: https://doi.org/10.55122/junsibi.v3i1.412
-
Mardiani, E., Rahmansyah, N., & Kurniati, I. (2023). Website Design at SDN Cipete Utara 07. SITEKIN: Jurnal Sains, Teknologi Dan Industri, 20(2), 891-898. DOI: http://dx.doi.org/10.24014/sitekin.v20i2.22438.
-
Mardiani, E., & Ramadhan, F. A. (2023). Design Information System Sales of Nuts and Bolts at PT. Catur Naga Steelindo. SITEKIN: Jurnal Sains, Teknologi dan Industri, 20(2), 729-735. DOI: http://dx.doi.org/10.24014/sitekin.v20i2.21948.
-
-
-
-
-
Djamaludin, M. A., Triayudi, A., & Mardiani, E. (2022). Analisis Sentimen Tweet KRI Nanggala 402 di Twitter menggunakan Metode Naïve Bayes Classifier. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(2), 161–166. https://doi.org/10.35870/jtik.v6i2.398.
-
Mardiani, E., Rahmansyah, N., Ningsih, S., Lantana, D. A., Wirawan, A. S. P., Wijaya, S. A., & Putri, D. N. (2023). Komparasi Metode Knn, Naive Bayes, Decision Tree, Ensemble, Linear Regression Terhadap Analisis Performa Pelajar Sma. Innovative: Journal Of Social Science Research, 3(2), 13880-13892. DOI: https://doi.org/10.31004/innovative.v3i2.1949.
-
Indriyanti, I., Ichsan, N., Fatah, H., Wahyuni, T., & Ermawati, E. (2022). Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin. Jurnal Responsif: Riset Sains dan Informatika, 4(2), 118-125. https://doi.org/10.51977/jti.v4i2.762.
-
Basuki, B., & Rejeki, S. (2021). PENDEKATAN DAN METODA PENELITIAN FENOMENA GEMPA BUMI. Jurnal Teknik Sipil Giratory UPGRIS, 2(2), 52-65. DOI: https://doi.org/10.26877/giratory.v2i2.10343.
-
Sarofi, M. A. A., Irhamah, I., & Mukarromah, A. (2020). Identifikasi Genre Musik dengan Menggunakan Metode Random Forest. Jurnal Sains dan Seni ITS, 9(1), D79-D86. http://dx.doi.org/10.12962/j23373520.v9i1.51311.
-
Rim, D., Baraldi, R., Liu, C. M., LeVeque, R. J., & Terada, K. (2022). Tsunami early warning from global navigation satellite system data using convolutional neural networks. Geophysical Research Letters, 49(20). https://doi.org/10.1029/2022gl099511
-
Mulia, I. E., Ueda, N., Miyoshi, T., Gusman, A. R., & Satake, K. (2022). Machine learning-based tsunami inundation prediction derived from offshore observations. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33253-5
-
Mazinani, I., Ismail, Z., Shamshirband, S., Hashim, A. M., Mansourvar, M., & Zalnezhad, E. (2016). Estimation of tsunami bore forces on a coastal bridge using an extreme learning machine. Entropy, 18(5), 167. https://doi.org/10.3390/e18050167.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.