Published: 2023-12-01
The Shopee Application User Reviews Sentiment Analysis Employing Naïve Bayes Algorithm
DOI: 10.35870/ijsecs.v3i3.1699
Nur Adha Pasaribu, Sriani
- Nur Adha Pasaribu: Universitas Islam Negeri Sumatra Utara , Indonesia
- Sriani: Universitas Islam Negeri Sumatra Utara , Indonesia
Article Metrics
- Views 0
- Downloads 0
- Scopus Citations
- Google Scholar
- Crossref Citations
- Semantic Scholar
- DataCite Metrics
-
If the link doesn't work, copy the DOI or article title for manual search (API Maintenance).
Abstract
With the significant growth of internet use in Indonesia, there has been a surge in online business activity. The convenience offered by online platforms is increasingly in demand because it allows consumers to shop without being bound by a certain time or location. Before making a purchase, consumers tend to look for information first through various sources such as reviews on blogs, Instagram, TikTok, or reviews on the YouTube platform which is integrated in the application. This research adopted a method that included planning, literature study, data collection, and data processing using a dataset from the Play Store application which was taken using the Python library with an initial amount of 5000 data. After a manual filtering process which involved removing slang words, eliminating duplications, and normalizing punctuation marks, the remaining data was 3946. The application of the Naïve Bayes algorithm in this research uses probability methods to classify and predict 3141 training data and 805 test data, with Python library help. The accuracy calculation results show satisfactory performance, with an accuracy of 86.00%, precision of 80.74%, recall of 78.13%, and f1-score of 79.00% on a dataset of 3946. Analysis from this research shows the dominance of positive sentiment in 2050 data, while sentiment negative amounted to 1199 data. The amount and quality of training data plays an important role in system predictions, where high data quality provides better accuracy in predicting sentiment classes
Keywords
Sentiment Analysis ; Shopee ; Naive Bayes
Article Metadata
Peer Review Process
This article has undergone a double-blind peer review process to ensure quality and impartiality.
Indexing Information
Discover where this journal is indexed at our indexing page to understand its reach and credibility.
Open Science Badges
This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.
How to Cite
Article Information
This article has been peer-reviewed and published in the International Journal Software Engineering and Computer Science (IJSECS). The content is available under the terms of the Creative Commons Attribution 4.0 International License.
-
Issue: Vol. 3 No. 3 (2023)
-
Section: Articles
-
Published: %750 %e, %2023
-
License: CC BY 4.0
-
Copyright: © 2023 Authors
-
DOI: 10.35870/ijsecs.v3i3.1699
AI Research Hub
This article is indexed and available through various AI-powered research tools and citation platforms. Our AI Research Hub ensures that scholarly work is discoverable, accessible, and easily integrated into the global research ecosystem. By leveraging artificial intelligence for indexing, recommendation, and citation analysis, we enhance the visibility and impact of published research.
-
Muslimin, M. and Lusiana, V., 2023. Analisis Sentiment Terhadap Kenaikan Harga Bahan Pokok Menggunakan Metode Naive Bayes Classifier. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(3), pp.1200-1209. DOI: http://dx.doi.org/10.30865/mib.v7i3.6418
-
Nugroho, D.G., Chrisnanto, Y.H. and Wahana, A., 2016, September. Analisis Sentiment Pada Jasa Ojek Online Menggunakan Metode Naive Bayes. In Prosiding Seminar Sains Nasional dan Teknologi. 1(1), pp. 156-161. DOI: http://dx.doi.org/10.36499/psnst.v1i1.1526.
-
Firmansyach, W.A., Hayati, U. and Wijaya, Y.A., 2023. Analisa Terjadinya Overfitting Dan Underfitting Pada Algoritma Naive Bayes Dan Decision Tree Dengan Teknik Cross Validation. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), pp.262-269. DOI: https://doi.org/10.36040/jati.v7i1.6329.
-
Ahmad, A.Z., Asril, E., Sadar, M. and Turnandes, Y., 2023. Analisis Sentiment Opini Terhadap Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Naïve Bayes Dan Decision Tree. ZONAsi: Jurnal Sistem Informasi, 5(1), pp.100-110. DOI: https://doi.org/10.31849/zn.v5i1.5553
-
Apandi, T.H. and Sugianto, C.A., 2019. Algoritma Naive Bayes untuk Prediksi Kepuasan Pelayanan Perekaman e-KTP. Juita, 7(2), pp.125-128. DOI: https://doi.org/10.30595/juita.v7i2.3608
-
-
Budiman, B., 2021. Perbandingan Algoritma Klasifikasi Data Mining untuk Penelusuran Minat Calon Mahasiswa Baru. NUANSA INFORMATIKA, 15(2), pp.37-52. DOI: https://doi.org/10.25134/nuansa.v15i2.4162
-
Cahyaningtyas, C., Nataliani, Y. and Widiasari, I.R., 2021. Analisis Sentiment pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE. AITI, 18(2), pp.173-184. DOI: https://doi.org/10.24246/aiti.v18i2.173-184
-
Depari, D.H., Widiastiwi, Y. and Santoni, M.M., 2022. Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung. Informatik: Jurnal Ilmu Komputer, 18(3), pp.239-248. DOI: https://doi.org/10.52958/iftk.v18i3.4694
-
Shabrilianti, S.S., Triayudi, A. and Lantana, D.A., 2023. Analisis Klasifikasi Perfomance KPI Salesman Menggunakan Metode Decision Tree Dan Naïve Bayes. JURIKOM (Jurnal Riset Komputer), 10(1), pp.182-191. DOI: http://dx.doi.org/10.30865/jurikom.v10i1.5628.
-
-
-
-
Ginting, V.S., Kusrini, K. and Taufiq, E., 2020. Implementasi Algoritma C4. 5 untuk Memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan Sekolah Menggunakan Python. Inspiration: Jurnal Teknologi Informasi dan Komunikasi, 10(1), pp.36-44. DOI: https://doi.org/10.35585/inspir.v10i1.2535
-
Kamil, M. and Cholil, W., 2020. Analisis Perbandingan Algoritma C4. 5 dan Naive Bayes pada Lulusan Tepat Waktu Mahasiswa di Universitas Islam Negeri Raden Fatah Palembang. Jurnal Informatika, 7(2), pp.97-106. DOI: https://doi.org/10.31294/ji.v7i2.7723.
-
Nuraeni, R., Sudiarjo, A. and Rizal, R., 2021. Perbandingan Algoritma Naïve Bayes Classifier dan Algoritma Decision Tree untuk Analisa Sistem Klasifikasi Judul Skripsi. Innovation in Research of Informatics (INNOVATICS), 3(1), pp. 26-31. DOI: https://doi.org/10.37058/innovatics.v3i1.2976
-
-
Permana, J.N., Goejantoro, R. and Prangga, S., 2023. Perbandingan Algoritma C4. 5 Dan Naïve Bayes Untuk Prediksi Ketepatan Waktu Studi Mahasiswa. EKSPONENSIAL, 13(2), pp.161-170. DOI: https://doi.org/10.30872/eksponensial.v13i2.947.
-
Putri, T.A.Q., Triayudi, A. and Aldisa, R.T., 2023. Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentiment Terhadap Kepuasan Pelanggan Starbucks. Journal of Information System Research (JOSH), 4(2), pp.641-649. DOI: https://doi.org/10.47065/josh.v4i2.2949
-
Supriyadi, A., 2023. Perbandingan Algoritma Naive Bayes dan Decision Tree (C4. 5) dalam Klasifikasi Dosen Berprestasi. Generation Journal, 7(1), pp.39-49. DOI: https://doi.org/10.29407/gj.v7i1.19797.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright Retention and Open Access License
Authors retain copyright of their work and grant the journal non-exclusive right of first publication under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
This license allows unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Rights Granted Under CC BY 4.0
Under this license, readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, including commercial use
- No additional restrictions — the licensor cannot revoke these freedoms as long as license terms are followed
3. Attribution Requirements
All uses must include:
- Proper citation of the original work
- Link to the Creative Commons license
- Indication if changes were made to the original work
- No suggestion that the licensor endorses the user or their use
4. Additional Distribution Rights
Authors may:
- Deposit the published version in institutional repositories
- Share through academic social networks
- Include in books, monographs, or other publications
- Post on personal or institutional websites
Requirement: All additional distributions must maintain the CC BY 4.0 license and proper attribution.
5. Self-Archiving and Pre-Print Sharing
Authors are encouraged to:
- Share pre-prints and post-prints online
- Deposit in subject-specific repositories (e.g., arXiv, bioRxiv)
- Engage in scholarly communication throughout the publication process
6. Open Access Commitment
This journal provides immediate open access to all content, supporting the global exchange of knowledge without financial, legal, or technical barriers.