Published: 2023-08-30

Analyzing Customers in E-Commerce Using Dempster-Shafer Method

DOI: 10.35870/ijsecs.v3i2.1497

Issue Cover

Downloads

Article Metrics
Share:

Abstract

This research explores the analysis of consumer sentiment in the context of e-commerce by applying the sophisticated Dempster-Shafer method. We started with the collection of more than 20,000 consumer reviews from various leading e-commerce platforms and continued with a detailed data pre-processing stage to obtain a clean and structured dataset. Next, we leverage the Dempster-Shafer method to represent and combine information from multiple sources, addressing uncertainty in diverse consumer opinions. The results of the sentiment analysis show that the Dempster-Shafer method achieves an accuracy of around 85%, with good evaluation metrics. Additionally, this research provides insight into the factors that influence consumers' views of products or services in the growing e-commerce context. The literature review also reveals the potential application of the Dempster-Shafer method in other aspects of e-commerce business, such as risk management and consumer trust. This research highlights the contribution of the Dempster-Shafer method in addressing uncertainty and complexity in consumer sentiment analysis, yielding a deep understanding of consumer perceptions, and enabling more accurate decision making in a dynamic e-commerce context. This research also provides a foundation for further development in consumer sentiment analysis and the application of the Dempster-Shafer method in e-commerce.

Keywords

Consumer Sentiment ; E-Commerce ; Sentiment Analysis ; Dempster-Shafer Method

Peer Review Process

This article has undergone a double-blind peer review process to ensure quality and impartiality.

Indexing Information

Discover where this journal is indexed at our indexing page to understand its reach and credibility.

Open Science Badges

This journal supports transparency in research and encourages authors to meet criteria for Open Science Badges by sharing data, materials, or preregistered studies.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)