International Journal Software Engineering and Computer Science (IJSECS)

5 (3), 2025, 998-1009

Published Online December 2025 in IJSECS (http://www.journal.lembagakita.org/index.php/ijsecs) P-ISSN: 2776-4869, E-ISSN: 2776-3242. DOI: https://doi.org/10.35870/ijsecs.v5i3.5263.

RESEARCH ARTICLE Open Access

Monitoring Information System to Ensure Completion of Medical Procedure Informed Consent Forms at Hospital X

Shinta Yuspita *

Health Information Management Study Program, Politeknik Piksi Ganesha, Bandung City, West Java Province, Indonesia.

Corresponding Email: shintayuspita19@gmail.com.

Yuyun Yunengsih

Health Information Management Study Program, Politeknik Piksi Ganesha, Bandung City, West Java Province, Indonesia.

Email: yoen1903@gmail.com.

Falaah Abdussalaam

Health Information Management Study Program, Politeknik Piksi Ganesha, Bandung City, West Java Province, Indonesia.

Email: falaah_abdussalaam@yahoo.com.

Received: August 6, 2025; Accepted: September 5, 2025; Published: December 1, 2025.

Abstract: Medical action consent forms are known to be legal documents in the delivery of healthcare services. However, when they are not well completed, it affects the quality of services and the accountability of an institution. Recurring problems in documentation processes include incomplete data entry, late submissions, and substandard recording; all these increase risks for medical errors and administrative complications. A web-based information system was developed to address these systematic deficiencies using Rapid Application Development (RAD) methodology. Field observations and structured interviews with healthcare personnel were used as research tools in the design of this system. The development process continued through four iterative phases: requirements planning, user-centered design, system construction, and deployment evaluation. This platform comprises automated validation protocols that prevent incomplete submissions from being accepted into the database until all required fields have been completed by the user; real-time alert mechanisms for missing data fields within a submission; and streamlined interfaces optimized for clinical workflows. Functional testing shows statistically significant improvements in documentation efficiency and completion rates among medical staff documented by the system compared to those not documented by it. The system permits real-time documentation of procedures with lower error margins compared to existing methods plus shorter processing times than existing methods. This study found that RAD-based solutions present feasible approaches toward improving accuracy and speed in medical consent documentation while simultaneously achieving legal compliance and patient safety goals within hospitals. The platform uses technology-driven quality assurance mechanisms to solve longstanding challenges in documentation.

Keywords: Information System; Medical Consent Form; Rapid Application Development (RAD); Electronic Informed Consent; Documentation Completeness.

[©] The Author(s) 2025, corrected publication 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless stated otherwise in a credit line to the material. Suppose the material is not included in the article's Creative Commons license, and your intended use is prohibited by statutory regulation or exceeds the permitted use. In that case, you must obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

1. Introduction

Forms of consent for medical actions (Informed Consent) are the current legal instruments and ethical obligations that have become part of modern medical practice. These forms serve as proof that the patient has been adequately informed about the medical action and has given their consent consciously, voluntarily, and without any form of coercion. In the delivery of health services, informed consent is more than just a legal requirement; it is a manifestation of respect for the autonomy of patients, the integrity of the professions that provide health services, and the accountability of health service institutions. However, although it is very important to do so, proper and complete documentation of informed consent still faces a lot of problems in hospitals across Indonesia. According to Lorenzetti *et al.* (2018), major barriers were a lack of understanding among medical personnel about the legal and procedural aspects related to informed consent, time constraints in demanding clinical schedules, and an integrated monitoring and validation system within hospital workflows [1]. Therefore, negligence in documentation has become a common practice despite its grave consequences on legal compliance, ethics, and patient safety. According to research by Prisusanti *et al.* (2024), several hospitals in Indonesia reported that the rate of completion for informed consent does not exceed 60% which constitutes a potential risk for legal medical claims against hospitals and medical personnel who might be sued due to invalid or incomplete documentation [2].

Many hospitals have started using Hospital Management Information Systems (SIMRS) to help make their services more efficient and standardized. But according to Saputra Mokoagow *et al.* (2024), even though SIMRS has clinical and administrative modules, it does not yet have features that help monitor and report completed informed consents [3][4]. There are very few local implementations of e-consent modules that can check whether data is complete, send automatic notifications, and ensure legal validity. Internationally known experiences have shown quality improvements in documentation through electronic clinical information systems. Ayaz *et al.* (2021) reported that in China the compliance rate increased by 30% after implementing Electronic Informed Consent (EIC) systems with automatic validation features and real-time notifications [5]. Verreydt *et al.* (2021) talk about security requirements for data privacy in an e-consent system; authentication audit trails as well as non-repudiation are all needed for legally valid health information systems [6]. New technologies such as smart contracts and blockchain technology are used to manage medical consent documents in a way that is transparent, safe, and cannot be changed afterward. Amin *et al.* (2024) created a prototype based on smart contracts which enables dynamically verified digital consent thus opening up new possibilities for technically efficient systems that are also legally and ethically sound [7].

Given the gap between current documentation practices and available technological solutions worldwide, it is urgent to develop an information system that specifically addresses the completeness and validity of informed consent. Such systems must integrate digital documentation functions, automatic quality control, clinical education, and real-time compliance reporting to hospital management. Therefore, we designed and developed an information system for medical action consent form completion that enhances compliance, efficiency, and accountability in hospital medical documentation processes. The design employs structured software engineering approaches considering SIMRS interoperability and user experience aligned with healthcare personnel workloads and clinical workflows. We expect our system to set new best practices for bridging medical and legal requirements in modern Indonesian healthcare delivery.

2. Related Work

Electronic medical record systems have evolved to address persistent documentation challenges in healthcare facilities. Lorenzetti *et al.* (2018) conducted a systematic review identifying key barriers to physician documentation in emergency departments, including time constraints, insufficient legal understanding, and lack of integrated monitoring systems [1]. Prisusanti *et al.* (2024) reported that informed consent completion rates at Indonesian hospitals remain below 60%, creating substantial medical litigation risks [9]. Rosalinda *et al.* (2021) evaluated outpatient electronic medical record implementation at Hospital X Bandung, demonstrating that technology-supported systems enable faster and more accurate services compared to paper-based records [11]. Qoyum *et al.* (2025) and Setiyawan (2024) examined medical record completeness at different Indonesian hospitals, revealing significant documentation deficiencies requiring systematic intervention [24][25].

Hospital Management Information Systems (SIMRS) have been widely adopted to improve operational efficiency, yet specific functions for informed consent monitoring remain underdeveloped. Saputra Mokoagow *et al.* (2024) found that while SIMRS accommodates clinical and administrative modules, specialized documentation validation features are scarce [5]. Agiwahyuanto *et al.* (2024) analyzed electronic medical record data at hospitals but found limited attention to consent form completeness verification [14]. Security and legal validity represent critical concerns in electronic consent systems. Verreydt *et al.* (2021) outlined

security and privacy requirements for electronic consent, emphasizing authentication, audit trails, and non-repudiation as necessary for legally valid health information systems [6]. Yunengsih (2024) performed legal analysis of electronic medical consent in inpatient departments, examining regulatory compliance and legal enforceability [4]. Daud *et al.* (2024) analyzed the legal strength of electronic medical records as evidence in medical disputes, highlighting the need for robust digital signature mechanisms and data integrity protection [13]. Amin *et al.* (2024) proposed a smart contract-enabled informed consent strategy using blockchain technology to ensure transparent and immutable consent management [7].

Software development methodologies have been applied to healthcare information systems with varying approaches. Septyani *et al.* (2024) developed a medical archiving system using Rapid Application Development (RAD), demonstrating faster delivery cycles suitable for healthcare contexts [12]. Santoso and Amanullah (2022) implemented RAD for academic information systems, achieving efficient development timelines [16]. Rahmaliani *et al.* (2023) applied Agile Software Development for electronic medical record governance in inpatient mortality reporting, emphasizing flexibility and continuous improvement [23]. Abdussalaam and Oktaviani (2020) designed web-based information systems using prototyping methods, allowing iterative refinement based on user feedback [10]. Technical implementations have explored diverse technology stacks, with Chauhan *et al.* (2019) demonstrating database implementation using Python Flask framework for lightweight and flexible web application development [21]. Despite these advances, existing systems lack integrated solutions combining real-time validation, automated notifications, clinical workflow integration, and legal compliance verification specifically for informed consent documentation. Our research addresses this gap by developing a specialized information system ensuring completeness, validity, and accountability in medical action consent form management.

3. Research Method

3.1 Research Type and Approach

This study constitutes software engineering research aimed at developing a web-based information system to improve the completeness of medical action consent form documentation. The research employs a qualitative-descriptive and experimental-applied approach, where researchers actively participate in requirements analysis, system design, application development, and effectiveness evaluation based on user responses and system functionality assessment [10].

3.2 System Development Method

This research adopts the Rapid Application Development (RAD) methodology. RAD was selected based on the need for rapid and iterative system development with active involvement from users as primary stakeholders. The RAD model enables system construction within a relatively short timeframe without compromising quality and core functionality [11][12].

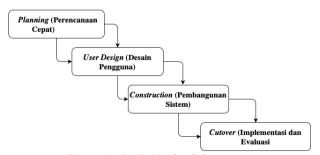


Figure 1. RAD Method Structure

The RAD methodology applied in this research consists of four stages:

- 1) Planning (Rapid Planning). This stage involves problem identification, user requirements gathering, and system solution planning. Researchers conducted direct field observations and interviews with medical personnel involved in medical action consent form documentation.
- 2) User Design. System design was performed participatively with stakeholders including physicians, nurses, and medical records officers. Initial prototypes were designed considering usability aspects and clinical workflow patterns.
- Construction. System development utilized PHP programming language along with HTML/CSS/JavaScript and Bootstrap for frontend interface. Development proceeded iteratively with continuous integration of user feedback.

4) Cutover (Implementation and Evaluation). The system underwent functionality testing and end-user validation. This stage included user training and qualitative evaluation data collection regarding usability, documentation completeness, and user satisfaction.

3.3 Data Collection Techniques

Data for this research were obtained through several techniques; Interviews were conducted with physicians, nurses, and medical records officers to identify problems in consent form documentation and gather system requirements. Observations involved direct examination of medical action documentation workflows in service units. Document studies reviewed existing medical action consent form formats, medical record documentation regulations, and clinical documentation quality policies to ensure compliance with medical record regulations and facilitate transition from paper-based to electronic documentation [13].

4. Result and Discussion

4.1 Results

4.1.1 Existing System Analysis

Based on field observations and interviews with medical administration staff and healthcare personnel, medical action consent forms are still completed semi-digitally using paper media. This process occurs after medical procedures are performed, where physicians or nurses must manually fill out forms before submitting them to the medical records department for archiving. Several critical findings emerged from the existing system observation. Data completeness is frequently unmet, particularly regarding patient or physician signatures and procedure execution times. Recording processes are slow because medical personnel must document data during busy service periods. Documents are often lost or damaged due to the absence of digital backups. No automatic validation system exists, resulting in undetected input errors. These problems pose legal, administrative, and patient safety risks due to the lack of complete and accurate written evidence of performed medical procedures [14][15].

4.1.2 System Design

System design employed the Rapid Application Development (RAD) approach, enabling rapid and iterative development with active user involvement in design and testing processes [16]. The flowchart provides a graphical representation of process flows within the information system, illustrating relationships between entities, activity stages, and logical decisions occurring within the system. For this consent form completeness information system, the flowchart visualizes the process of data entry, validation, and reporting of medical action consent by patients, healthcare personnel, and medical records administrators.

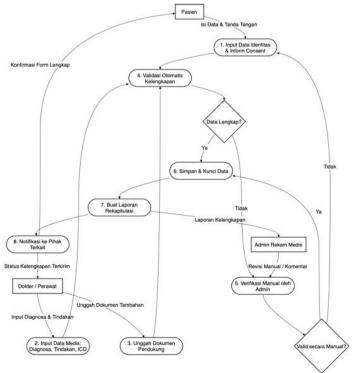


Figure 2. System Flowchart

The context diagram illustrates relationships between the system and external actors such as physicians, nurses, medical records administrators, and patients. The system receives data input from medical personnel and provides output in the form of form completeness status and summary reports [17].

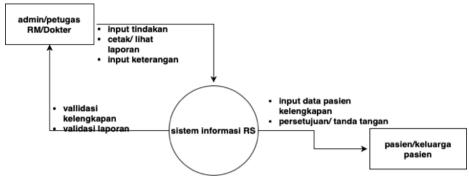


Figure 3. System Context Diagram

The DFD diagram depicts main processes running within the system, starting from user authentication based on roles, either as medical personnel or medical records administrators. After successful login, users are directed to the medical action consent form completion process. This form contains patient information, procedure and diagnosis details, and patient consent that must be completed thoroughly [18].

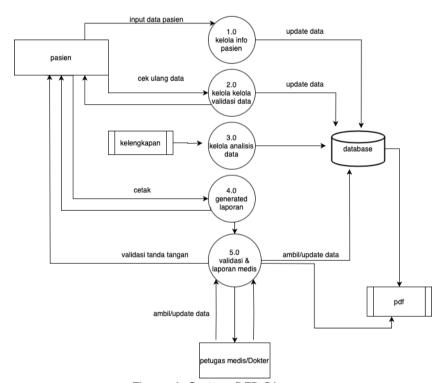


Figure 4. System DFD Diagram

The Entity Relationship Diagram (ERD) is structured based on database architecture. This diagram illustrates interconnections between main entities in the system, such as patients, users, medical personnel, procedure data, and validation results. Inter-entity relations are built considering data consistency and efficiency in storage and information retrieval processes [19].

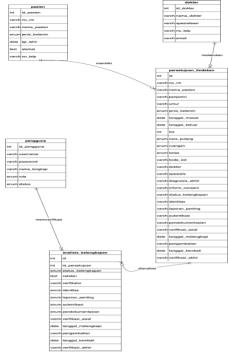


Figure 5. System ERD Diagram

The user interface design was created with a semi-manual approach that still supports workflow automation. The objective is to create a system that is easily understood and quickly used by medical personnel in dynamic work situations. Automatic validation is provided through visual indicators showing mandatory fields that remain incomplete. The system blocks the save process if important entries are incomplete. Additionally, the system provides a report page that can be filtered by time, medical personnel name, or form completeness status, with formats ready for printing or digital export [20].

Figure 6. User Login Page

The database structure follows MySQL database schema for large-scale implementation. The database consists of a patient table containing basic patient information, a physician table storing medical personnel data, a user table containing system account data with access rights, a consent_procedure table for storing form completion data, and a completeness_analysis table recording validation status for each entry [21].

Figure 7. Database Structure

The application folder structure is designed modularly to facilitate management and continuous development. The controllers folder contains process logic such as data input and validation, models handle database schemas for database management, templates store HTML files, static stores CSS, JavaScript, and other visual assets, while db serves as the directory for SQLite file storage or external database connections [22].

4.1.3 System Implementation

System implementation was conducted in stages, starting from user interface development, validation mechanism implementation, to visual documentation through screenshots of the running system. In the initial implementation stage, the main interface was developed to provide structured access according to user roles. The login process includes role-based authentication, differentiating access rights between medical personnel (physicians and nurses) and medical records administrators [23]. After successful entry, users are directed to the main dashboard presenting a list of medical action consent forms. Each entry in this list displays data completeness status, facilitating users in monitoring data input progress.

Figure 8. Application Dashboard Page

Figure 9. Physician Procedure Consent Form Page

The completion form is designed to contain essential elements such as patient identity, medical diagnosis, procedure details, and consent fields. Most of these input components are dynamic, such as medical procedure options and execution times available in dropdown format to minimize input errors [24]. Mandatory field validation is applied in real-time on this form. If any fields remain incomplete, the system automatically prevents the save process and provides warnings to users. The validation system relies not only on backend logic but also incorporates visual feedback through color usage. For instance, mandatory fields that remain incomplete are highlighted in red as visual warnings immediately recognizable by users. If users attempt to save incomplete data, the system displays automatic notifications (auto-alerts) explaining which sections require completion [25].

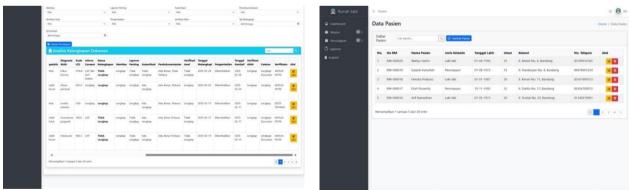


Figure 10. Physician Procedure Consent Form Page

Figure 11. Patient Data Page

As part of implementation documentation, displayed screenshots serve as visual evidence of system features that have been executed. These are data pages displayed for each function, customized according to user needs. The Patient Data Page serves as the main information center for patient demographic data at the hospital. All registered patient data is displayed in table format consisting of medical record numbers, full names, gender, date of birth, age, address, and telephone numbers. A search feature is provided to facilitate quick access to specific patient data. Administrators or medical records officers can also add new patient data through dedicated buttons and perform updates or deletions through available action icons. The existence of this page is crucial in ensuring completeness and connectivity of patient data with other modules in the system, including medical action consent forms.

The Physician Data Page is designed to facilitate management of medical personnel information at the Hospital. Through this page, administrative staff or system administrators can perform input, updates, and deletion of physician data on duty. Displayed information includes physician identity such as physician ID, full name with title, specialization, telephone number, and email address. A search feature is also available to facilitate physician data searches based on specific keywords. Add data, edit, and delete functionalities are displayed as intuitive action icons, facilitating usage. This page becomes an important part in supporting medical documentation processes, particularly in medical action consent systems requiring accurate and integrated physician data.

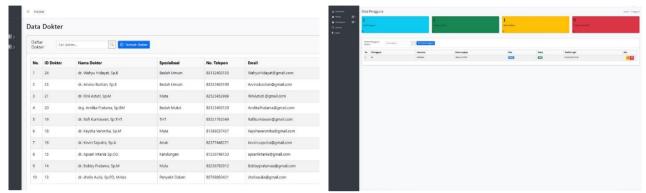


Figure 12. Physician Data Page

Figure 13. User Data Page

The User Data Page functions as a user account management module within the information system. System users generally consist of administrators and medical staff with different access rights. This page displays statistical summaries in the form of total users, active users, system administrators, and inactive users in informative colored card visuals. Below, a table displays user details such as user ID, username, full name, role, account status, and last login time. System administrators can add new accounts, perform edits, and deactivate or delete inactive users. This module is important for ensuring system security and structured and well-documented access rights management. This visual documentation functions not only as a technical supplement but also helps readers understand the system's operation comprehensively even without direct application interaction. With these features, all users can be controlled by administrators and all activities can proceed effectively according to hospital needs [26][27].

Figure 14. Completeness Report Page

Generated reports can be automatically produced and become neatly organized PDF report results, and these report results can be categorized according to hospital audit needs.

Figure 15. Report Results in PDF Format

RUMAH SAKIT X

LAPORAN STATISTIK KELENGKAPAN DOKUMEN

riode: 01 Januari 2025 - 28 Februari 2025

Total Bulan Dilaporkan: 2 bulan							
Bulan	Total Pasien	Lengkap	Tidak Lengkap	Persentase			
January 2025	10	10	0	100%			
February 2025	10	5	5	50%			

Figure 16. Report Results in PDF Format

4.1.4 System Testing

System testing was conducted using Blackbox Testing methods, focusing on examining system functionality from end-user perspectives without examining internal code structure. The objective is to ensure that each main feature works as expected. Testing began with the login feature, which is the main gateway for user access to the system. Users were tested with various scenarios such as entering valid, incorrect, and empty login data. Subsequently, testing was performed on data entry forms. The system was tested from input completeness, data format validation, to its ability to provide automatic warnings when data is incomplete [28][29].

Table 1. Blackbox Testing System Results

Tested Feature	Test Scenario	Input Provided	Result	Remarks
Login	User enters valid	Username: admin02,	Valid	As expected
(Authentication)	username & password	Password: admin123		
Login	User enters incorrect	Username: wronguser,	Valid	Login validation works
	username	Password: admin123		
Dashboard Access	User successfully logs in	Role: medical records	Valid	Access rights match
	as admin	admin		role
Dashboard Access	User successfully logs in	Role: physician	Valid	Access rights match
	as physician			role
Form Completion	All fields filled completely	Complete patient data	Valid	Input process
	and correctly	+ medical procedure		successful
Form Completion	Mandatory field (e.g.,	Diagnosis field: empty	Valid	Real-time validation
	diagnosis) not filled			works
Form Completion	Data format incorrect	Diagnosis: 1234	Valid	Character format
	(e.g., numbers in text			validation needed
	field)			
Auto-alert	User presses 'Save'		Valid	Error notification
Notification	button when mandatory	empty		displays automatically
	field empty			
Medical Procedure	User selects medical	Dropdown: 'Antibiotic	Valid	Dynamic dropdown
Dropdown	procedure from	Administration'		functions
	dropdown			
Summary Report	User accesses	Navigate to	Valid	Ensures summary
Display	completeness report	Completeness Report		report visible
	page	page		
Generate PDF	User clicks button to	Click Export PDF or	Valid	Ensures PDF report
Report	generate report in PDF	Print Report button		generation function
	format			works
PDF Report Content	User opens generated	Open downloaded PDF	Valid	Ensures data integrity
	PDF report file	file		and format in PDF
				report
Logout	User clicks logout button	Click 'Logout'	Valid	Session closed
				properly

4.2 Discussion

The Medical Action Consent Form Completeness Information System developed using the Rapid Application Development method successfully addresses critical documentation challenges identified in the

existing paper-based system. The RAD methodology proved appropriate for this healthcare context, enabling rapid iterative development with continuous stakeholder involvement from physicians, nurses, and medical records officers, ensuring alignment with actual clinical workflows [12][16]. The implementation of real-time validation mechanisms with color-coded visual feedback effectively prevents incomplete data entry, directly addressing the data completeness issues prevalent in the previous system [24][25]. This automated validation approach reduces human error and ensures all mandatory fields are completed before data submission, thereby improving documentation quality and legal compliance [14]. The role-based authentication system successfully differentiates access rights between medical personnel and administrators, enhancing system security and workflow management consistent with healthcare information system requirements [23].

The transition from semi-digital paper-based documentation to a fully electronic system mitigates risks associated with document loss, damage, and lack of backup, while providing organized digital archiving [9][11]. The PDF report generation feature with customizable filtering options addresses hospital audit needs and administrative reporting requirements, supporting healthcare quality assurance processes [26][27]. The modular system architecture facilitates future maintenance and scalability, essential for long-term healthcare information system sustainability [18][21]. Blackbox testing results confirmed that all main system features function as expected, with stable performance meeting user expectations [28][29]. However, enhanced character format validation in certain input fields remains necessary to further strengthen data integrity. Overall, this system successfully transforms medical consent documentation processes into a validated and auditable information system, reducing legal, administrative, and patient safety risks associated with incomplete medical documentation [13][15]. The system demonstrates that technology-based solutions can significantly improve efficiency and accuracy of health services when properly designed and implemented [19].

5. Conclusion

The Medical Action Consent Form Completeness Information System was built following the Rapid Application Development method to resolve urgent documentation issues in the current process. An iterative model with active user involvement resulted in a feasible system design that meets real hospital requirements. The proposed system improves efficiency, accuracy, and completeness of data in medical action consent form filling. User-centered design plus automatic validation mechanisms are based on achieving these goals. Automatic validation features and notifications about incomplete entries reduce the number of empty forms, input mistakes, and delays in documentation effectively. Blackbox testing results prove that all functions of the system work well and as expected by users. The shift from paper to electronic documentation gives hospitals a dependable tool for overseeing medical consent records. Real-time validation stops incomplete submissions while role-based access control guarantees suitable security levels. PDF report generation with adjustable filters meets audit needs and supports administrative reporting demands. The modular structure permits future maintenance plus system growth as hospital needs change. Hospitals should adopt digital consent management systems to enhance data integrity and workflow efficiency moving forward. RAD methodology was successfully implemented in healthcare settings proving that when rapidly developed approaches are correctly aligned with clinical workflows and staff input they can deliver functional solutions.

References

- [1] Lorenzetti, D. L., Quan, H., Lucyk, K., Cunningham, C., Hennessy, D., Jiang, J., *et al.* (2018). Strategies for improving physician documentation in the emergency department: A systematic review. *BMC Emergency Medicine*, *18*, 36. https://doi.org/10.1186/s12873-018-0188-z
- [2] Yunengsih, Y. (2024, November). Analysis Of The Use Electronic Medical Record In Supporting Work Effectiveness Of Medical Record Unit at Puskesmas Tegalgubug. In *Proceedings* (Vol. 4, No. 1, pp. 71-80).
- [3] Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R., & Stiawan, D. (2021). The Fast Health Interoperability Resources (FHIR) standard: Systematic literature review of implementations, applications, challenges and opportunities. *JMIR Medical Informatics*, *9*(7), 1–21. https://doi.org/10.2196/21929
- [4] Yunengsih, Y., & Rahma, S. A. (2024). The Legal Analysis Of Electronic Medical Consent In The Inpatient Department Of RS PKU Muhammadiyah Petanahan. *Jurnal EduHealth*, *15*(02), 1164-1171.

- [5] Mokoagow, D. S., Mokoagow, F., Pontoh, S., Ikhsan, M., Pondang, J., & Paramarta, V. (2024). Sistem Informasi Manajemen Rumah Sakit dalam Meningkatkan Efisiensi: Mini Literature Review. *COMSERVA J. Penelit. dan Pengabdi. Masy*, *3*(10), 4135-4144.
- [6] Verreydt, S., Yskout, K., & Joosen, W. (2021). Security and privacy requirements for electronic consent: a systematic literature review. *ACM Transactions on Computing for Healthcare*, 2(2), 1-24. https://doi.org/10.1145/3436845
- [7] Amin, M. A., Tummala, H., Shah, R., & Ray, I. (2024). Empowering Patients for Disease Diagnosis and Clinical Treatment: A Smart Contract-Enabled Informed Consent Strategy. *arXiv* preprint *arXiv*:2412.09820.
- [8] Maspupah, A. (2024). Literature Review: Advantages And Disadvantages Of Black Box And White Box Testing Methods. *Jurnal Techno Nusa Mandiri, 21*(2), 151-162. https://doi.org/10.33480/techno.v21i2.5776.
- [9] Prisusanti, R. D., Ratnasari, D., & vinata Nabelah, P. (2024). Analisis Kualitatif Rekam Medis Elektronik Pendaftaran Pasien Rawat Jalan di RSUD Ibnu Sina Gresik: Qualitative Analysis of Electronic Medical Records of Outpatient Registration at Ibnu Sina Gresik Hospital. *ASSYIFA: Jurnal Ilmu Kesehatan, 2*(3), 524-531. https://doi.org/10.62085/ajk.v2i3.120.
- [10] Abdussalaam, F., & Oktaviani, I. (2020). Perancangan Sistem Informasi Nilai Berbasis Web Menggunakan Metode Prototyping. *Jurnal E-Komtek*, 4(1), 16-29. https://doi.org/10.37339/e-komtek.v4i1.213.
- [11] Rosalinda, R., Setiatin, S., Susanto, A., & Piksi, P. (2021). Evaluasi penerapan rekam medis elektronik rawat jalan di rumah sakit umum x bandung tahun 2021. *Cerdika: Jurnal Ilmiah Indonesia, 1*(8), 1045-1056.
- [12] Juanda, Y. S., & Suryani, A. I. (2024). Perancangan Sistem Pengarsipan Visum Et Repertum dengan Metode Rapid Application Development. *Decode: Jurnal Pendidikan Teknologi Informasi, 4*(2), 522-532. https://doi.org/10.51454/decode.v4i2.580.
- [13] Daud, K. R., Sagala, P., Sutarno, S., & Sutrisno, S. (2024). Analisis yuridis kekuatan hukum rekam medis elektronik sebagai alat bukti dalam suatu sengketa medis. *Jurnal Cahaya Mandalika, 3*(3), 2648–2661. https://doi.org/10.36312/jcm.v3i3.3660.
- [14] Agiwahyuanto, F., Ernawati, D., Prasetya, J., Tomy Abiyasa, Kesehatan, F., & Kunci, K. (2024). Analisis data rekam medis elektronik di rumah sakit (Studi perancangan dan evaluasi sistem informasi analisis kuantitatif). *Jurnal Rekam Medis dan Informasi Kesehatan, 5*(3), 219–233.
- [15] Kristanti, Y. E., & Ain, R. Q. (2021). Sistem informasi manajemen rumah sakit: Literature review. *Muhammadiyah Public Health Journal*, 1(2), 179-193. https://doi.org/10.24853/mphj.v1i2.8760.
- [16] Santoso, L., & Amanullah, J. (2022). Pengembangan Sistem Informasi Akademik Berbasis Website Menggunakan Metode Rapid Application Development (Rad). *Elkom: Jurnal Elektronika dan Komputer*, *15*(2), 250-259. https://doi.org/10.51903/elkom.v15i2.943.
- [17] Joel, A. E., Yunengsih, Y., & Abdussalaam, F. (2023). Perancangan Sistem Informasi Pendaftaran Pasien Rawat Jalan Menggunakan Visual Studio 2010 Di RSUD Al-Ihsan. *Jurnal Ilmiah Perekam Dan Informasi Kesehatan Imelda (JIPIKI)*, 8(2), 143-155. https://doi.org/10.52943/jipiki.v8i2.1292.
- [18] Abdussalaam, F., & Badriansyah, B. (2021). Perancangan Sistem Informasi Pemeriksaan Barang Berbasis Web Menggunakan Metode SSAD. *Expert, 11*(2), 174-183. https://doi.org/10.36448/expert.v11i2.2167.
- [19] Abdussalaam, F., Rivatunisa, C., & Agustin, C. (2024, November). Development of a Technology-Based Immunization Service Information System to Improve Efficiency and Accuracy of Health Services. In *Proceedings* (Vol. 4, No. 1, pp. 60-70).

- [20] Maulana, F. I., Susanto, V., Shilo, P., Gunawan, J., Pangestu, G., & Budi Raharja, D. R. (2021, September). Design and Development of Website Dr. Changkitchen Diet Catering Using SDLC Waterfall Model. In *Proceedings of the 6th International Conference on Sustainable Information Engineering and Technology* (pp. 75-79). https://doi.org/10.1145/3479645.3479652.
- [21] Singh, M., Verma, A., Parasher, A., Chauhan, N., & Budhiraja, G. (2019). Implementation of database using python flask framework. *International Journal of Engineering and Computer Science*, 8(12), 24890-24893.
- [22] Liang, C., Wang, G., Li, N., Wang, Z., Zeng, W., Xiao, F. A., ... & Li, Y. (2024). Accelerating page loads via streamlining JavaScript engine for distributed learning. *Information Sciences*, *675*, 120713. https://doi.org/10.1016/j.ins.2024.120713
- [23] Rahmaliani, I., Abdussalaam, F., Gunawan, E., & Soelistijaningrum, M. (2023). Tata kelola rekam medis berbasis elektronik dalam pelaporan mortalitas pasien rawat inap menggunakan metode Agile software development. *INOVTEK Polbeng-Seri Informatika*, 8(2), 343-355. https://doi.org/10.35314/isi.v8i2.3532.
- [24] Qoyum, N. I. F., Wirani, Y., & Syahfitri, B. (2025). Tinjauan kelengkapan pengisian berkas rekam medis rawat inap di Rumah Sakit Islam Ar-Rasyid Palembang triwulan I tahun 2023. *Jurnal Kesehatan dan Pembangunan, 15*(1), 179–183. https://doi.org/10.52047/jkp.v15i1.375.
- [25] Setiyawan, H. (2025). Analysis of completeness of informed consent forms for inpatients with surgical cases at the General Hospital PKU Muhammadiyah Bantul. *PELS*, *7*, 229–233.
- [26] Elkin, P. L., & Brown, S. H. (2023). Fast healthcare interoperability resources (FHIR). In *Terminology, Ontology and their Implementations* (pp. 511-565). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-11039-9_22.
- [27] Putri, S. A., Abdussalaam, F., & Gunawan, E. (2023). Perancangan sistem informasi asesmen awal medis gawat darurat di Hermina Arcamanik menggunakan Visual Studio 2010. *Media Bina Ilmiah, 17*(12), 3023–3030. https://doi.org/10.33758/mbi.v17i12.389.
- [28] Panja, E., & Manongga, D. (2023). Perancangan Sistem Informasi Keuangan Berbasis Web Pada Gks Mauliru Menggunakan Metode Rapid Application Development. *JATI (Jurnal Mahasiswa Teknik Informatika)*, 7(1), 579-584. https://doi.org/10.36040/jati.v7i1.6401.
- [29] Saraswati, N. W. S., Wardani, N. W., Maswari, K. L., & Muku, I. D. M. K. (2021). Rapid Application Development untuk Sistem Informasi Payroll berbasis Web. *MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 20*(2), 213-224. https://doi.org/10.30812/matrik.v20i2.950.