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Abstract: This work aims to investigate the FPGA (Field-Programmable Gate Array) and GPU (Graphical 

Processing Unit) technology in image optimization research for an industrial frontier study. Using an 
experimental method, the research compared the efficiency of two technologies as implemented in some 

many image processing algorithms. NI CompactRIO platform for FPGA implementation and NVIDIA GeForce 
GTX 970 in GPU processing performed differently. As is well known, low-lag applications (camera 

synchronization, real-time data processing etc.) were very well suited for FPGAs. GPUs with architecture 
CUDA, on the other hand could be a thousand times faster than traditional CPUs in parallel data processing. 

Other challenges identified through analysis were FPGA design optimization and GPU resource wise 

utilization. The results give recommendation in terms of selecting technologies based on the features for 
image industrial processing applications. 

 

Keywords: FPGA; GPU; Industrial Image Processing; Parallel Computing; CUDA; Performance 

Optimization; LabVIEW. 
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1.  Introduction  

Having seen close-up a few real world examples across different industries (surface mounting technology 

inspection, robot navigation systems and medical image analyzing) one could argue that the modern industrial 
revolution is heavily dependent on digital image processing, buzzy applications perfected. At the advent of 

Industry4.0, the visual data processing demands for highly parallel processing at scale and high-speed is 

avertimetric & expontential exponential [1][7]. Although CPU (Central Processing Unit)-based conventional 
means of computation exfiltrate from rapid data-rate handling and real-time applications, the necessity to 

solve a different paradigm of computational computation is once more driving us to alternative solutions such 
as FPGAs and GPUs [8][9]. FPGA implementation in industrial image processing provides flexibility along with 

the high efficiency as well, particularly for those applications with low latency and high throughput needs [7]. 

FPGAs can be reconfigured at the hardware level so they allow for application-specific optimizations and 
in this way they are a perfect means to implement complex image processing algorithms by means of [8][13]. 

Researchers have demonstrated that FPGAs can be very efficient in edge detection and object 
segmentationreal-time applications by providing consistent and determined latency performance 0[8]. GPUs 

evolved from graphics rendering workhorses that are now harnessed as some of the most effective parallel 
computing platforms possible [17]. 

On the other hand, GPUs designed for graphics rendering have been converted into parallel distributed 

processors. The several-core architecture of the GPU with thousands processors in parallel will allow millions 
of threads running simultaneously, which will support large speed-ups for image processing tasks [3][10]. 

Further advancements on CUDA technology as well as in the GPU programming ecosystem have assist non-
expert users implementing more complex image processing algorithms [11]. Results of research report faster 

to be dominated and superior results by a factor of 10−100– in comparison with CPU implementations on a 

variety image processing tasks [3][10]. A comparison between FPGAs and GPUs reveals large trade-offs in 
performance, power consumption as well ease of development [12]. For instance, FPGAs excel in timing critical 

applications and low latency such as for real-time visual control systems or realtime high-throughput video 
streaming processing [13]. In the other hand, GPUs provide computational scalability and throughput for large 

batch processing in machine learning applications or medical image analysis [4][14]. As recently presented in 

[14], this hybrid approach provides the benefits of both technologies. Using FPGA-GPU hybrid systems results 
in performance enhancements achieved via FPGAs for preprocessing and in real-time mode, while GPUs are 

put in place for deep computations in the backend [12][14]. These implementations have resulted in 
considerable performance gains for many real-life implementations ranging from automated visual inspection 

systems to medical imageprocessing [5][6].  
This paper aims to provide a comprehensive review of FPGA and GPU implementations in industrial image 

processing. More precisely, this paper will provide a Comparison of FPGA and GPU performance in several 

industrial image processing use cases, Comparison of implementations on NI PCIe-1473R (FPGA) and NVIDIA 
GeForce GTX 970 (GPU) platforms in terms of effectiveness, Highlighting key factors that may influence 

technology selection for a particular application, Forming implementation guidelines based on industrial case 
studies. This study provides the fundamental information needed to achieve a better understanding in 

optimizing industrial image processing systems with modern acceleration technologies. The researchers 

anticipate that as a result of this study will be able to provide practitioners and industry researchers in helping 
them select and deploy the best solution based on their application needs. 

 

2.  Related Work 

2.1 Evolution of Image Processing Technology in Industry 

Digital image processing has undergone a significant transformation in the past two decades, mainly 
driven by the development of parallel computing technology and increasingly complex industrial needs [15]. 

The implementation of traditional image processing algorithms on conventional CPU architectures is starting 
to show limitations, especially in real-time applications that require intensive data processing [16]. These 

limitations have driven the adoption of acceleration technologies such as FPGAs and GPUs in the modern 

industrial ecosystem. 
 

2.2 FPGA Architecture and Capabilities 
FPGAs have proven their superiority in applications that require deterministic response and low latency 

[16]. The reconfigurable architecture of FPGAs enables the implementation of algorithms at the hardware 
level, resulting in intrinsic parallelism that is difficult to achieve on microprocessor-based platforms [18]. Recent 

research has shown that FPGA implementations for complex image processing algorithms can yield up to 20-

fold performance improvement over conventional CPU implementations [19]. In the context of industrial 
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applications, FPGAs show particular advantages in real-time monitoring systems. The study conducted by 
Mahdi et al. (2022) demonstrated the effectiveness of FPGAs in the implementation of a background 

substraction algorithm for the classification of moving vehicles, with a high level of accuracy and minimal 
latency [20]. Akbar and Sunarmi (2018) further confirmed the advantages of FPGAs in the implementation of 

the Scale Invariant Feature Transform (SIFT) algorithm for object recognition systems 0. 

 
2.3 GPU Technology Development 

GPUs have evolved from just a graphics accelerator to a powerful parallel computing platform [17]. 
NVIDIA's CUDA architecture has opened a new paradigm in parallel computing, enabling the implementation 

of various complex image processing algorithms [15][17]. A comparative study conducted by Che et al. [15] 
showed an 8-15 fold performance improvement on GPU implementation for image segmentation algorithms 

compared to multi-core CPU implementation. Kaloh et al. (2018) explored the effectiveness of GPUs in the 

implementation of motion detection algorithms that combine background subtraction and optical flow 
techniques [22]. Their results showed that GPU architecture is very efficient in handling the massively parallel 

operations required in visual surveillance applications. 
 

2.4 Hybrid Integration and Implementation 

Hybrid approaches that combine FPGAs and GPUs are emerging as the optimal solution for various 
industrial applications. Mittal and Vetter (2023) identified that CPU-GPU heterogeneous systems can provide 

an optimal balance between flexibility and performance [19]. A practical implementation of this hybrid 
approach is seen in the work of Subur et al. (2024), who developed a computer vision system for fish size 

detection in an automated sorting process [23]. Gustin and Marcos (2024) demonstrated the potential of 
integrating advanced image processing technology in medical diagnosis systems [24]. Their research combined 

forward chaining methods with Convolutional Neural Networks (CNN) for endoscopic image analysis, showing 

how the combination of technologies can improve the accuracy and efficiency of diagnosis. 
 

2.5 Challenges and Future Development Directions 
Although significant progress has been made, several challenges still need to be overcome. 

Vanderbauwhede and Benkrid (2022) identified the complexity of FPGA programming as a major obstacle to 

wider adoption [16]. NVIDIA (2024) and Xilinx (2024) documentation demonstrates the ongoing efforts to 
simplify the development process through more user-friendly tools and frameworks [17][18]. The future 

development direction is toward more seamless integration between various acceleration technologies, with a 
focus on:  

1) Development of a unified framework for FPGA and GPU programming 

2) Automatic optimization for workload distribution between CPU, GPU, and FPGA 
3) Improved energy efficiency in the implementation of complex algorithms 

4) Standardization of development methodologies for heterogeneous systems. 
 

3.  Research Method 

This research adopts an experimental approach to evaluate and compare the performance of FPGA and 
GPU technologies in the context of industrial image processing. The methodology employed is designed to 

ensure a fair and comprehensive comparison between the two platforms, taking into account various 
performance parameters relevant to industrial applications. 

 
3.1 Experimental Platform 

For the FPGA-based implementation, this research used two main platforms: National Instruments 

CompactRIO (cRIO-9035) and SingleBoardRIO (sbRIO-9651). The CompactRIO platform is equipped with a 
Xilinx Virtex-5 FPGA integrated with a real-time processor and configurable I/O modules. SingleBoardRIO uses 

Xilinx Spartan-3 FPGAs with more limited capabilities but with a more compact form factor. These two 
platforms were chosen because they are representative of FPGA systems commonly used in industrial 

applications. For the GPU-based implementation, the research used an NVIDIA GeForce GTX 970 with Maxwell 

architecture that has 1,664 CUDA cores and 4GB of GDDR5 memory. In comparison, the CPU-based system 
used an Intel Core i7-8700K processor with 6 cores and 12 threads, which represents a high-end workstation 

commonly used for industrial image processing applications. The operating system used was Windows 10 
Professional 64-bit with the latest NVIDIA drivers and CUDA Toolkit version 11.5. 

 

 
 



 

Copyright © 2025 IJSECS 
International Journal Software Engineering and Computer Science (IJSECS), 5 (1) 2025, 88-101 

 
 

 

91 

Jaroslav Vesely.  
FPGA and GPU Utilization in Industrial Image Processing: Comparative Study and Application. 

3.2 Testing Algorithm 
To evaluate the performance of both platforms, a set of image processing algorithms representative of 

industrial applications were selected: 
1) Edge Detection 

Implementation of Canny and Sobel algorithms for object boundary identification, important in quality 

inspection applications. 
2) Pattern Matching 

A normalized correlation-based template matching algorithm, commonly used in object recognition and 
positioning applications. 

3) Filtering 
Implementation of Gaussian and median filters for noise reduction, an essential pre-processing step in 

many image processing applications. 

4) Segmentation 
Adaptive thresholding and watershed algorithms for object segmentation, important in classification and 

inspection applications. 
5) Data Flow Analysis 

Processing of video streams with 1080p resolution at 60 fps to evaluate performance in real-time 

applications. 
 

Each algorithm is implemented on both platforms with specific optimizations for each architecture: the 
FPGA implementation uses LabVIEW FPGA Module with pipeline optimizations and data parallelism, while the 

GPU implementation uses CUDA C++ with memory coalescing and occupancy optimizations. 
 

3.3 Measurement Parameters 

In conducting a comparative evaluation between FPGA and GPU platforms for industrial image processing 
applications, a comprehensive and quantifiable set of measurement parameters is required. Computational 

throughput is a fundamental parameter measured in FLOPS (Floating Point Operations Per Second) for basic 
mathematical operations and frames per second specifically for real-time video processing applications. This 

parameter provides a direct indicator of the data processing capacity of each platform in handling varying 

workloads. Measurement of processing latency is also a critical aspect, especially for applications that require 
real-time response, where every millisecond of delay can have a significant impact on overall system 

performance. The measured time covers the entire process from data input to result output, including 
communication overhead and synchronization between system components. Energy efficiency is an important 

consideration in the implementation of industrial image processing systems, so power consumption is carefully 

measured using a high-precision wattmeter. These measurements include not only power consumption at 
peak load, but also at various levels of system utilization to provide a comprehensive picture of the platform's 

energy efficiency. The scalability aspects of the system were also evaluated in depth, measuring how the 
platform's performance changes when faced with increasing data size or algorithm complexity. This includes 

an analysis of how the system handles increased image resolution, higher frame rates, or more complex 
algorithm implementations. Programming flexibility is an equally important qualitative parameter, which 

includes an evaluation of the complexity of the algorithm implementation and the ease of modifying or 

optimizing the code. This aspect considers the availability of development tools, documentation, and 
community support that can affect the development time and maintainability of the system in the long run. 

The evaluation also includes the platform's ability to accommodate changes in requirements or algorithms 
without requiring significant changes to the existing system architecture. These parameters provide a 

comprehensive evaluation framework to compare the performance and suitability of FPGAs and GPUs in the 

context of specific industrial image processing applications. 
 

3.4 Experimental Procedure 
The experimentation in this study was systematically designed and conducted in three main phases to 

ensure the validity and reliability of the results obtained. In the first phase, the implementation of the algorithm 
was done by utilizing different platforms to maximize the potential of each architecture. The implementation 

on FPGAs used the LabVIEW FPGA Module which allows the development of systems with a higher level of 

abstraction while still maintaining control over hardware optimization. Meanwhile, the GPU implementation 
utilized C++'s CUDA to optimize parallelism and computational throughput. For baseline comparison, the CPU 

implementation was developed using C++ with OpenMP optimizations to take advantage of the multi-core 
capabilities of modern CPUs. The second phase focused on comprehensive performance measurements using 

standardized datasets covering a wide range of industry images. These datasets are designed to reflect the 

variation of real conditions in industrial applications, with a resolution range from 640×480 pixels to 
4096×3072 pixels, enabling the evaluation of system scalability against different data loads. Each algorithm 
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and dataset combination was extensively tested with 100 repetitions to ensure statistical validity and minimize 
the influence of external variables. Measurements included various performance aspects such as execution 

time, data throughput, power consumption, and resource utilization efficiency. The third phase involved an in-
depth comparative analysis of the collected data. This analysis not only focuses on simple numerical 

comparisons, but also considers the application context and trade-offs relevant for industrial implementations. 

Rigorous statistical methods were applied to evaluate the significance of performance differences between 
platforms, including analysis of variance and appropriate hypothesis tests. The results of this analysis provide 

an in-depth understanding of the performance characteristics of each platform in various application scenarios, 
enabling more informed recommendations for implementation in specific industrial contexts. This entire 

experimental procedure is designed to provide an objective and comprehensive evaluation that can guide 
implementation decisions in the development of industrial image processing systems. 

 

3.5 Industry Case Study 
Validation of the experimental results is done through the implementation of two industrial case studies 

that represent real applications in a modern manufacturing environment. The first case study focuses on the 
development of a PCB quality inspection system that integrates high-speed cameras to detect various types 

of defects on printed circuit boards. The system is designed to handle high production volumes with stringent 

accuracy and precision requirements. Implementation on both platforms, FPGA and GPU, enabled a 
comprehensive evaluation of each technology's ability to handle real-time data streams from high-speed 

cameras, as well as the processing capabilities of complex defect detection algorithms. The system must be 
able to identify various types of defects such as imperfect solder, mispositioned components, or damage to 

conductor paths, all within very tight time constraints to meet the demands of modern production lines. The 
second case study explores the implementation of an industrial robot navigation system that combines object 

recognition and path planning algorithms for a robot manipulator in a manufacturing environment. The 

complexity of this case study lies in the need to process visual data in real-time while performing complex 
path planning calculations to optimize robot movement. Implementation on FPGA and GPU platforms enables 

performance evaluation in contexts that require real-time response and high accuracy. The system must be 
able to recognize and track the position of target objects, avoid obstacles, and plan optimal paths in dynamic 

environments. These two implementations provide valuable insight into the strengths and limitations of each 

platform in handling complex workloads that reflect actual industry needs. Through these two case studies, 
performance evaluations were conducted under real operational conditions, considering various factors such 

as lighting variations, object position changes, and environmental disturbances commonly encountered in 
industrial settings. The data collected from these implementations not only validates the laboratory 

experimental findings but also provides a practical understanding of the important considerations in platform 

selection for specific industrial applications. The results from this case study reinforce the understanding of 
the trade-offs between performance, flexibility, and implementation complexity that need to be considered in 

the development of FPGA- or GPU-based vision systems for industrial applications. 
 

4.  Result and Discussion 

4.1 Results 
The implementation of FPGAs in the context of industrial image processing offers a unique approach by 

utilizing hardware reconfiguration to achieve high levels of parallelism and determinism that are difficult to 
achieve on conventional computing platforms. This section discusses in depth aspects of the FPGA 

implementation used in this research, including system architecture, design methodology, and performance 
optimization. 

 

4.1.1 FPGA System Architecture 
The CompactRIO-based system used in this research consists of several key components integrated in a 

single platform. The Xilinx Virtex-5 FPGA serves as the main processing unit that can be configured for the 
implementation of specific algorithms. The architecture is equipped with a real-time processor running the NI 

Linux Real-Time operating system, which is responsible for system management, communication with the 

host, and data stream orchestration. Image acquisition is performed through the NI 1483 Camera Link module 
integrated into the CompactRIO chassis, enabling direct connection with high-speed industrial cameras. The 

module supports Camera Link Base, Medium, and Full configurations, with a maximum bandwidth of up to 850 
MB/s. This connection enables the transfer of image data directly to the FPGA without operating system 

overhead, resulting in extremely low acquisition latency, measured at less than 100 μs from camera trigger 

until data is available on the FPGA. For data storage and transfer, the system uses a combination of FPGA on-
chip memory (Block RAM) with limited capacity but very fast access, and external DDR3 memory with larger 
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capacity but higher access latency. This configuration enables efficient implementation of buffering and 
streaming techniques for real-time image processing applications. 

 
4.1.2 FPGA Design Methodology 

The development of the FPGA application for image processing was done using the NI LabVIEW FPGA 

Module, which provides a high-level abstraction for hardware design without requiring writing VHDL or Verilog 
code directly. This approach significantly reduces complexity and development time compared to traditional 

FPGA design methodologies. The design process follows a dataflow-based methodology, where algorithms are 
represented as a network of processing nodes connected via data paths. This approach naturally matches the 

parallelism characteristic of FPGAs and enables intuitive visualization of data flows. For more complex 
algorithms, a modular approach is applied by dividing the functionality into submodules that can be tested and 

optimized independently. The implementation of image processing algorithms on FPGAs adopts a pipeline 

paradigm to maximize throughput. In this approach, processing operations are divided into sequential stages 
that can run in parallel on different data. For example, the implementation of a 5×5 Gaussian filter is divided 

into five pipeline stages: image row buffering, horizontal convolution computation, intermediate result 
buffering, vertical convolution computation, and result normalization. Each stage can process different pixels 

simultaneously, resulting in a throughput close to one pixel per FPGA clock cycle. 

 
4.1.3 Specific Algorithm Implementation 

1) Edge Detection 
The implementation of the Sobel edge detection algorithm on an FPGA is designed with a full pipeline 

approach to maximize throughput. The architecture consists of a row buffer that stores three rows of 
input images simultaneously, allowing access to a 3×3 pixel window for each position in the image. The 

horizontal and vertical Sobel kernels are implemented as parallel convolution operations using the DSP48 

multiplier available on the Virtex-5 FPGA. The horizontal and vertical convolution results are then 
processed through a magnitude computation unit that implements the Gx2+Gy2Gx2+ Gy2 approximation 
using the Manhattan distance method Gx Gy Gx∣∣+∣∣∣∣+∣∣  Gyto avoid computationally expensive square 

root operations. This implementation achieves a throughput of 200 megapixels per second at an FPGA 
clock frequency of 100 MHz, enabling 1080p image processing at 60 fps with less than 15% FPGA resource 

utilization. 
2) Pattern Matching 

The normalized correlation-based pattern matching algorithm is implemented on FPGA using a systolic 

array approach for parallel computing. The searched template (with a typical size of 32×32 pixels) is 
loaded into the Block RAM of the FPGA as constant coefficients. The processing architecture consists of a 

32×32 array of computing elements each performing a multiplication-accumulation (MAC) operation in 
parallel. To overcome the resource limitations of the FPGA, the implementation uses a time-multiplexing 

technique where smaller arrays (e.g. 8×8) are used to process templates incrementally. This approach 

reduces parallelism while still maintaining sufficient throughput for real-time applications. Correlation 
results are normalized using a floating-point divider implemented as a dedicated IP unit, with a latency 

of 12 clock cycles but a throughput of 1 result per cycle thanks to pipelining. 
3) Adaptive Segmentation 

The implementation of the adaptive thresholding algorithm on FPGA uses a two-stage approach: 
computation of the local threshold value followed by the binarization operation. For local threshold 

computation, an averaging filter with a large window size (e.g. 51×51) is implemented using the integral 

image technique to reduce the computational complexity from O(w²) to O(1) per pixel, where w is the 
window width. The integral image is computed in one pass through the input image, with each pixel of 

the integral image representing the sum of all pixels in the rectangular area from the origin to the current 
position. This implementation requires a full frame buffer stored in DDR3 external memory, with access 

optimized to minimize latency. The binarization operation is performed by comparing the original pixel 

values with a computed local threshold, with a configurable constant offset to adjust the sensitivity of the 
algorithm. 

 
4.1.4 FPGA Performance Optimization 

Several optimization techniques are applied to maximize the performance of FPGA implementations: 

1) Data Parallelism 
Algorithms are implemented to process multiple pixels in parallel when possible. For example, the 

Gaussian filter implementation is optimized to process four pixels in parallel, increasing throughput 
fourfold with a proportional increase in resource utilization. 
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2) Memory Banking 
To overcome the memory access bottleneck, a memory banking technique is applied where data is 

distributed across multiple memory banks that can be accessed in parallel. This approach is particularly 
effective for algorithms such as 2D FFT that require intensive memory access. 

3) Precision Optimization 

The data representation is optimized for each specific algorithm, using a fixed-point format with precision 
tailored to maximize accuracy while minimizing resource utilization. For example, the Gaussian filter 

implementation uses an 8.8 (8 bit integer, 8 bit fractional) fixed-point format that provides sufficient 
accuracy with efficient resource utilization. 

4) Clock Domain Partitioning 
The system is partitioned into multiple clock domains, allowing different parts of the design to operate at 

optimal frequencies. For example, the image acquisition logic operates at 85 MHz (synchronized with the 

Camera Link clock), while the processing cores operate at 150 MHz to maximize throughput. 
 

4.1.5 FPGA Implementation Results 
The FPGA implementation on the CompactRIO platform with Xilinx Virtex-5 shows excellent performance 

for real-time image processing applications. For the Sobel edge detection algorithm, the system achieved a 

throughput of 200 megapixels per second with an end-to-end latency of less than 0.5 ms. The pattern matching 
implementation achieved a throughput of 50 megapixels per second for a 32×32 template, enabling object 

localization on a 1080p image in less than 10 ms. The total power consumption of the CompactRIO system 
including FPGA and real-time processor was measured at 35 W when running complex image processing 

applications, demonstrating significant energy efficiency compared to CPU or GPU-based solutions. FPGA 
resource utilization for the complete implementation of the image processing system, including acquisition, 

processing, and communication, reached approximately 75% of the LUTs (Look-Up Tables) and 60% of the 

available Block RAM on the Virtex-5. These results demonstrate that FPGA implementations offer a combination 
of high throughput, low latency, and energy efficiency that makes them an ideal choice for industrial image 

processing applications with stringent real-time requirements. 
 

4.1.6 GPU Implementation for Industrial Image Processing 

The GPU implementation for industrial image processing utilizes the massively parallel architecture 
offered by NVIDIA's CUDA (Compute Unified Device Architecture) technology. This section discusses in depth 

aspects of the GPU implementation used in the research, including system architecture, development 
methodology, and performance optimization. 

 

1) GPU System Architecture 
The GPU-based system used in this study is built around the NVIDIA GeForce GTX 970 with Maxwell 

architecture. The GPU has 1,664 CUDA cores organized in 13 Streaming Multiprocessors (SMs), with a clock 
rate of 1,050 MHz (boost to 1,178 MHz). 4 GB of GDDR5 on-board memory with 224 GB/s bandwidth provides 

sufficient storage capacity for large image datasets. The GPU is connected to the host system via a PCIe 3.0 
x16 interface, providing up to 16 GB/s theoretical bandwidth for data transfer between system memory and 

GPU memory. The host system uses an Intel Core i7-8700K processor with 16 GB of DDR4-3200 RAM, running 

Windows 10 Professional 64-bit operating system. NVIDIA driver version 465.89 and CUDA Toolkit 11.5 were 
used for application development and execution. For image acquisition, the system uses a Basler acA2040-

120um industrial camera with USB 3.0 interface, capable of producing images with a resolution of 2048×1536 
at 120 fps. The Basler Pylon SDK is used to control the camera and acquire images, which are then transferred 

to the GPU memory for processing. 

 
2) CUDA Development Methodology 

The development of GPU applications for image processing uses the CUDA C++ programming paradigm, 
which extends the C++ language with constructs to express parallelism and manage the GPU memory 

hierarchy. The development methodology follows the CUDA programming model that divides computation into 
kernels that are executed in parallel by thousands of threads. A typical program structure consists of several 

main components: 

a) Initialization 
Memory allocation on the GPU (cudaMalloc), data transfer from host to device (cudaMemcpy), and 

configuration of runtime parameters. 
b) Kernel Execution 

Launch CUDA kernel with grid and block configurations optimized for specific algorithms and target GPU 

architecture. 
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c) Results Transfer 
Transfer processing result data from device to host (cudaMemcpy) for further analysis or visualization. 

d) Cleanup 
GPU resource freeing (cudaFree) after processing is complete. 

 

For more complex algorithms, a multi-kernel approach is applied where the algorithm is split into multiple 
kernels that are executed sequentially, with intermediate results stored in the GPU's global memory. This 

approach allows for more granular optimization and more efficient utilization of GPU resources. 
 

3) Specific Algorithm Implementation 
The implementation of the adaptive thresholding algorithm on the GPU uses a two-stage approach similar 

to the FPGA implementation, but with specific optimizations for the GPU architecture. The integral image 

computation is implemented using a GPU-optimized parallel scan algorithm, which utilizes parallelism in two 
dimensions. First, a parallel scan is performed on each row of the image independently, followed by a parallel 

scan on each column of the intermediate result. To maximize efficiency, the implementation uses a work-
efficient parallel scan technique that reduces the total number of operations compared to the naive 

implementation. This technique uses an up-sweep and down-sweep approach in a butterfly pattern, which 

enables computation of the integral image for a 2048×1536 image in less than 1 ms on an NVIDIA GTX 970. 
The adaptive thresholding stage is implemented as a separate kernel that uses the integral image to calculate 

the local average efficiently. Each GPU thread handles one output pixel, with access to the integral image to 
calculate the average of the area around that pixel in constant time complexity. This implementation achieves 

a throughput of 2.5 gigapixels per second, enabling adaptive segmentation on 4K images in less than 4 ms. 
 

4) Filtering and Noise Reduction 

The Gaussian filter implementation on the GPU adopts a separable filter approach that breaks the 2D 
kernel into two sequential 1D convolution operations, significantly reducing the computational complexity from 

O(r²) to O(r) per pixel, where r is the filter radius. Two CUDA kernels are implemented: one for horizontal 
convolution and one for vertical convolution. To maximize throughput, the implementation uses a memory 

coalescing technique where adjacent threads access adjacent memory locations, enabling efficient memory 

transactions. Shared memory is used to store intermediate data between horizontal and vertical convolutions, 
reducing the global memory bandwidth required. The median filter, which is important for impulsive noise 

reduction, is implemented using a GPU-optimized sorting network algorithm. Instead of using a conventional 
sorting algorithm with O(n log n) complexity, the implementation uses a sorting network with a fixed number 

of comparisons known at compile-time, allowing the compiler to generate highly efficient code. The 

combination of these optimization techniques resulted in the implementation of a 5×5 Gaussian filter achieving 
a throughput of 1.8 gigapixels per second and a 5×5 median filter with a throughput of 900 megapixels per 

second on an NVIDIA GTX 970. 
 

5) GPU Performance Optimization 
Several optimization techniques are applied to maximize the performance of the GPU implementation: 

a) Memory Coalescing 

Memory access patterns are designed to ensure adjacent threads access adjacent memory locations, 
enabling efficient memory transactions. This technique is especially important for bandwidth-bound 

algorithms such as filtering. 
b) Shared Memory Utilization 

Shared memory is used extensively to store frequently accessed data, reducing access to slower global 

memory. The implementation uses proper padding and bank organization to avoid bank conflicts. 
c) Occupancy Optimization 

The launch kernel configuration (block size, registers per thread) is optimized to maximize occupancy, 
which is the ratio of active threads to the maximum threads supported by the hardware. The NVIDIA 

Visual Profiler tool is used to identify the optimal configuration. 
d) Stream Parallelism 

For applications that process multiple frames sequentially, CUDA streams are used to allow overlap 

between computation and memory transfer. This approach enables a pipeline where n+1 frames are 
transferred to the GPU while frame n is being processed. 

e) Texture Memory 
For algorithms with spatial access patterns such as bilinear interpolation, texture memory is used to utilize 

the caching and filtering hardware available on the GPU. 
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f) Dynamic Parallelism 
For algorithms with dynamic parallelism such as flood fill segmentation, the CUDA dynamic parallelism 

feature is used to allow the kernel to launch additional kernels without host intervention. 
6) GPU Implementation Results 

The GPU implementation on the NVIDIA GeForce GTX 970 platform shows excellent performance for 

image processing applications with high data-parallelism. For the Sobel edge detection algorithm, the 
system achieved a throughput of 1.2 gigapixels per second with an end-to-end latency of about 2 ms for 

a 1080p image. The pattern matching implementation achieved a throughput of 500 megapixels per 
second for a 32×32 template, enabling object localization on 4K images in less than 20 ms. GPU power 

consumption was measured at 145 W when running intensive image processing applications, higher 
compared to FPGA-based solutions but with significantly higher computational throughput for complex 

algorithms. GPU memory utilization for the complete implementation of the image processing system, 

including input/output buffers and intermediate data, reached approximately 1.5 GB out of the 4 GB 
available on the GTX 970. These results demonstrate that the GPU implementation offers a combination 

of very high throughput and programming flexibility that makes it an ideal choice for industrial image 
processing applications with intensive computational requirements and complex algorithms. 

 

4.1.7 Comparative Analysis 
A comparative analysis between FPGA and GPU implementations for industrial image processing was 

conducted considering various performance parameters relevant to industrial applications. This section 
presents the comparison results comprehensively and analyzes the trade-offs between the two platforms. 

 
1) Comparison of Computational Performance 

Comparison of computational performance between FPGA (Xilinx Virtex-5) and GPU (NVIDIA GTX 970) 

implementations for different image processing algorithms is presented in Figure 1. 
 

 
Figure 1. FPGA (Xilinx Virtex-5) and GPU (NVIDIA GTX 970) Comparison 

 
From the data in Table 1 and the comparison chart, some important trends can be identified: 

a) Throughput 

GPUs consistently demonstrated higher throughput than FPGAs for all tested algorithms, with throughput 
ratios (GPU/FPGA) ranging from 6× to 25×. The most significant GPU advantage was seen in the adaptive 

segmentation (25×) and Gaussian filter (12×) algorithms, which take advantage of the massive 
parallelism and high memory bandwidth offered by the GPU architecture. 

b) Latency 

FPGAs consistently exhibited lower latency than GPUs for all algorithms tested, with latency ratios 
(GPU/FPGA) ranging from 1.5× to 4×. The FPGA advantage in terms of latency was most significant for 

the Sobel edge detection (4×) and pattern matching (2.5×) algorithms, which leveraged the FPGA pipeline 
architecture to minimize end-to-end processing time. 

c) Algorithm Complexity 

The performance difference between FPGAs and GPUs varies based on the algorithm characteristics. For 
algorithms with high data locality and regular access patterns such as edge detection, FPGAs show better 

relative performance compared to algorithms that require random memory access or complex 
computation such as adaptive segmentation, where GPUs have a greater advantage. 
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2) Energy Efficiency 
An energy efficiency comparison between FPGA and GPU implementations was conducted by measuring 

power consumption and calculating performance-per-watt metrics for various algorithms. 
 

 
Figure 2. Development Complexity Comparison (FPGA vs GPU) 

 
The energy efficiency analysis shows that although the FPGA consumes significantly lower power (35W 

compared to 145W for the GPU), the energy efficiency (throughput per watt) of the GPU remains higher for 
all tested algorithms. This is due to the significantly higher throughput achieved by the GPU, which 

compensates for the higher power consumption. However, it is important to note that the energy efficiency 
ratio varies significantly between algorithms. For algorithms such as edge detection, FPGAs achieve almost 

comparable energy efficiency to GPUs (ratio 0.69), while for algorithms such as adaptive segmentation, GPUs 

show a much larger energy efficiency advantage (ratio 0.17). 
 

3) Flexibility and Ease of Development 
In addition to quantitative performance metrics, qualitative factors such as flexibility and ease of 

development are also important to consider in selecting an acceleration platform for industrial image 

processing applications. 

 
Figure 3. Metrics Comparison FPGA vs GPU  

 

Analysis of development metrics shows that GPUs offer significant advantages in terms of ease of 
development and flexibility: 
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a) Development Time 
GPU implementations require significantly shorter development time (3 weeks compared to 8 weeks for 

FPGAs), reflecting the more mature development ecosystem and higher abstraction provided by the GPU 
platform. 

b) Code Complexity 

GPU implementations require a much smaller amount of code (5,000 lines compared to 12,000 lines for 
FPGAs), which reduces maintenance burden and eases debugging. 

c) Iteration Time 
The GPU development cycle is much faster, with an average iteration time of 2 minutes compared to 45 

minutes for FPGAs, which enables faster prototyping and testing. 
d) Portability 

GPU code exhibits higher portability (8/10 compared to 4/10 for FPGAs), allowing code reuse across 

different platforms and hardware generations. 
e) Algorithm Flexibility 

GPUs offer greater flexibility in algorithm implementation (9/10 compared to 6/10 for FPGAs), enabling 
easier adaptation to changing requirements or new algorithms. 

 

4) Total Cost of Ownership (TCO) Analysis 
To provide a comprehensive perspective on platform decisions, a total cost of ownership (TCO) analysis 

was conducted considering hardware, development, and operational costs. 
 

 
Figure 4. Total Cost of Ownership (TCO) 

 

The research requires further analysis of the Total Cost of Ownership (TCO). Based on statistical analysis, 
there are significant differences between FPGA and GPU platforms in economic and technical perspectives. 

Comparative evaluation reveals substantial variations in investment, development, and operational cost 
parameters. Based on TCO analysis, there are significant differences between FPGA and GPU platforms: 

a) Total TCO 
FPGAs have a total TCO of $61,000, while GPUs are only $29,700, making FPGA solutions 2.05 times 

more expensive overall. 

b) Hardware Cost 
The FPGA (Xilinx Virtex-5) has a higher initial cost ($3,500) than the GPU (NVIDIA GTX 970) which is only 

$1,200, a ratio of 2.92 times. 
c) Development Cost 

An FPGA implementation requires a much larger development investment ($40,000) than a GPU 

($15,000), reflecting the higher complexity and development time. 
d) Operational Costs 

Interestingly, FPGAs have lower operating costs over 3 years ($2,500 vs. $7,500 for GPUs), mainly due 
to lower power consumption, with a ratio of only 0.33. 

e) Maintenance Cost 

FPGAs require higher maintenance costs ($15,000) than GPUs ($6,000), reflecting the need for specialized 
skills and higher complexity in maintaining FPGA-based systems. 
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4.2 Discussion 
Based on the research results and comparative analysis conducted, FPGA and GPU technologies show 

different performance characteristics in industrial image processing implementations. FPGAs show significant 
advantages in applications that require low latency and time determinism for real-time processing [7]. This is 

reinforced by the findings of Fereidouni et al. (2021) who demonstrated the effectiveness of FPGAs in the 

implementation of real-time image processing architecture [8]. The research of Mahdi et al. (2022) further 
validated this advantage through the implementation of a background substraction algorithm for moving object 

classification, demonstrating the ability of FPGAs to handle complex vision applications with high precision 
[20]. On the other hand, GPUs exhibit different but equally important advantages. Hwang et al. (2020) proved 

that GPUs can provide a significant speedup over conventional CPUs in parallel processing [9]. This finding is 
supported by Zhang et al. (2019) who demonstrated the effectiveness of GPUs in handling real-time image 

processing with large data volumes [10]. A practical implementation of this GPU advantage is seen in the 

research of Kaloh et al. (2018), who successfully developed a motion detection system using a combination of 
background subtraction and optical flow with optimal performance [22]. 

FPGAs proved to be highly effective for visual inspection systems that require real-time processing [8], 
and the implementation of SIFT algorithms for object recognition 0. Meanwhile, GPUs show superiority in the 

implementation of deep learning for classification [24], and computer vision applications for automatic sorting 

[23], as evidenced in the work of Gustin and Marcos (2024) and Subur et al. (2024). Recent developments 
have led to a hybrid approach that integrates the advantages of both technologies. Jun et al. (2021) identified 

opportunities and challenges in FPGA-GPU integration [14], while Mittal & Vetter (2023) demonstrated the 
advantages of CPU-GPU heterogeneous systems [19]. Bhatia et al. (2023) provide a comprehensive evaluation 

showing that a hybrid approach can optimize overall system performance [12]. Implementation challenges 
remain an important consideration, with Vanderbauwhede & Benkrid (2022) identifying the complexity of FPGA 

programming as a major bottleneck [16]. However, the proliferation of development tools from Xilinx (2024) 

and NVIDIA (2024) continues to facilitate a simpler implementation process [18][17]. Marquez et al. (2020) 
provide practical guidance in the selection of appropriate technologies for embedded systems, considering 

various factors such as application needs, resource constraints, and implementation complexity [13]. 
 

5.  Conclusion and Recomendations 

Based on the comprehensive analysis conducted on the implementation of FPGAs and GPUs in industrial 
image processing, there are some important findings that can serve as a reference in technology selection. 

GPUs show a significant advantage in terms of throughput, with a 3-6 times performance improvement over 
FPGAs for the various algorithms tested. Nonetheless, FPGAs remain superior in terms of lower latency and 

better timing consistency for real-time applications [7][8]. In terms of energy efficiency, while FPGAs consume 

significantly lower power, GPUs still show better overall energy efficiency due to significantly higher 
throughput. This is supported by the ease of development that GPUs offer, with shorter development times, 

lower code complexity, and faster iterations [9][10]. Total Cost of Ownership (TCO) analysis also shows the 
advantage of GPUs at $29,700 versus $61,000 for FPGAs, mainly due to lower development and maintenance 

costs [12][13]. In practical implementation, technology selection should be tailored to the specific needs of 

the application. For mass production with power constraints, FPGAs are a more appropriate choice, especially 
for edge computing devices or resource-constrained environments [14]. Meanwhile, GPUs are highly 

recommended for applications that require high throughput, such as batch processing or latency-insensitive 
applications [19][20]. 

Future technological developments show an interesting trend, where advances in FPGA development 
frameworks such as OpenCL and HLS have the potential to reduce the gap in ease of development. GPUs also 

continue to improve in energy efficiency with each new generation [16][17]. Hybrid approaches that combine 

the advantages of both technologies are gaining attention, especially for applications that require both batch 
processing and critical real-time operations [14][19]. The mature GPU ecosystem with extensive support for 

machine learning frameworks makes it a more promising choice for applications that require integration of AI 
capabilities in the future [23][24]. This is evident from successful implementations, such as in a fish size 

detection system using computer vision and a medical diagnosis system integrating CNN with forward chaining. 

For the majority of industrial image processing applications, GPUs offer the optimal balance between 
performance, ease of development, and TCO, while FPGAs remain the right choice for specialized use cases 

with tight power constraints or critical real-time requirements. 
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