International Journal Software Engineering and Computer Science (IJSECS)

4 (2), 2024, 497-511

Published Online August 2024 in IJSECS (http://www.journal.lembagakita.org/index.php/ijsecs) P-ISSN: 2776-4869, E-ISSN: 2776-3242. DOI: https://doi.org/10.35870/ijsecs.v4i2.2832.

RESEARCH ARTICLE Open Access

Exploring the Fusion of Enterprise Architecture, Blockchain, and AI in Digital Governance: A Systematic Review

Musawer Hakimi *

Assistant Professor, Computer Science Department, Samangan University, Northeast Aybak City, Samangan Province, Afghanistan.

Corresponding Email: musawer@adc.edu.in.

Mohammad Shuaib Zarinkhail

Associate Professor, Information Systems Department, Kabul University, Afshar-Silo City, Kabul Province, Afghanistan.

Email: zarinkhail@gmail.co.

Sayed Zabihullah Musawi

Assistant Professor, Computer Science Faculty, Kunduz University, Kunduz City, Kunduz Province, Afghanistan. Email: sayedzabimusawi@kundoz.edu.af.

Received: June 24, 2024; Accepted: July 10, 2024; Published: August 1, 2024.

Abstract: The worldwide significance of the digital revolution in governance has grown recently, with governments using cutting-edge technology to enhance services, transparency, and citizen engagement. The research investigates the integration of blockchain technology, artificial intelligence (AI), and enterprise architecture (EA) into digital governance. Examining how these technologies may enhance government services' effectiveness, responsibility, and openness might contribute to a deeper understanding of them. Encompasses all literary works published between 2017 and 2024, including scholarly articles, conference papers, and reputable reports from repositories such as Google Scholars, IEEE Xplore, Scopus, Web of Science, and SpringerLink. This comprehensive analysis examines the functions of artificial intelligence (AI), blockchain technology, and enterprise architecture (EA) in electronic government (e-government) initiatives. An extensive dataset uncovers prevalent concerns, challenges, opportunities, and effects across several technologies. The research findings indicate that the EA framework significantly enhances interoperability and efficiency. Additionally, blockchain technology quarantees data integrity and transparency by using immutable records. Moreover, artificial intelligence enhances service delivery by automating procedures and improving decision-making skills. Nevertheless, the process of incorporating these technologies may need some help. These challenges include the compatibility between blockchain and existing systems, the need for skilled workers in AI, and reluctance to change inside organizations. Although there are some problems, it may provide advantages such as less duplication of tasks, enhanced traceability, and heightened public confidence. Integrating blockchain, artificial intelligence, and enterprise architecture presents unparalleled possibilities for revolutionizing digital governance. Future research should prioritize the scalability of these technologies, the establishment of new governance frameworks, and the ethical implications of artificial intelligence on public decision-making. Through the identification and resolution of acknowledged obstacles and the use of technological advantages, governments may construct governance systems that are more

[©] The Author(s) 2024, corrected publication 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless stated otherwise in a credit line to the material. Suppose the material is not included in the article's Creative Commons license, and your intended use is prohibited by statutory regulation or exceeds the permitted use. In that case, you must obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

498

effective, open, and responsible. This study provides a basis for policymakers and experts to explore advanced digital governance solutions.

Keywords: Enterprise Architecture; Blockchain Technology; Artificial Intelligence; Digital Governance; E-Government.

1. Introduction

In today's digital age, governments increasingly use innovative technologies to enhance service delivery, streamline procedures, and encourage accountability and transparency. Among these technologies, artificial intelligence (AI), blockchain, and enterprise architecture (EA) are breakthrough avenues to change how egovernment is conducted. This introduction summarizes the intersection of enterprise architecture, blockchain, and artificial intelligence in digital governance by highlighting the opportunities and challenges of their integration [1][2][3][4]. Using a robust strategic framework, enterprise architecture helps integrate an organization's business processes, information flows, and technology infrastructure to successfully and effectively achieve its objectives [5]. Within the "e-government framework", "EA" is crucial to attaining standardization, interoperability, and integration among many government departments and agencies [6]. Adopting "EA" concepts can help governments accelerate and maximize resource allocation, rationalize "IT" spending, and improve services to companies and citizens.

After initially being considered as the foundation for cryptocurrencies such as Bitcoin, blockchain technology has developed into a disruptive tool that significantly impacts digital governance [7]. The primary function of blockchain is to share transparent and immutable records across multiple sites through decentralized ledger technology. Blockchain can improve data integrity, eliminate corruption and fraud, and enable trustless transactions between electronic personnel in governments and government agencies [8][9]. Blockchain enables governments to streamline processes, reduce bureaucracy, and involve more citizens in decision-making.

Artificial intelligence, including machine learning, natural language processing, and other cognitive technologies, allows governments to automate routine tasks, analyze large amounts of data, and provide customized services [10]. In essence, Predictive analytics, "AI-driven" chatbots, and virtual assistants can enhance public engagement, optimize resource allocation, and expedite the "policy-making" process in government departments [11]. Furthermore, governments can proactively resolve public requirements, implement data-driven decisions, and identify emergent trends through AI-driven insights. The blend of business architecture, "artificial intelligence," and blockchain transforms digital governance and provides new, creative, and effective methods. By integrating these technologies, governments can build robust, flexible, citizen-centred multi-ecosystems that support openness, accountability, and inclusivity [12].

This study examines the pros and cons of "integrating artificial intelligence", blockchain, and business architecture into digital governance. It draws on literature, case studies, and expert perspectives to illustrate benefits, drawbacks, and best practices. It provides legislators, officials, and technology stakeholders with pragmatic recommendations for leveraging these technologies for digital innovation and public sector reform. It also examines the challenges and prospects of e-government projects and highlights how enterprise architecture can support using artificial intelligence and blockchain. Finally, it analyzes and guides the future directions of digital governance, emphasizing their impact on government operations. This work is essential since it might transform the "digital governance" discipline using artificial intelligence, blockchain technology, and enterprise architectural integration. The study solves important issues, including responsibility, efficiency, and openness, by methodically investigating how these cutting-edge technologies could improve government services. Policy-makers, IT technocrats, public managers, and anyone involved in "e-government" projects must first understand the possibilities and difficulties. The information collected from this study will help build solid digital governance systems, guaranteeing the availability of public services that are efficient and safe.

Furthermore, the study helps strategically plan and implement "blockchain and artificial intelligence technologies" in government operations by stressing the function of enterprise architectural frameworks. By considering that, this study seeks to inspire creativity, raise public confidence, and propel the worldwide digital revolution of public policies.

2. Research Method

Using a Systematic, methodical review technique, we examine the integration of enterprise architecture (EA), blockchain, and artificial intelligence (AI) in digital governance using insights derived from several academic sources in our research methodology. Aiming to comprehensively analyze the present environment, difficulties, and prospects of these technologies in governance frameworks, this methodology approach fits the systematic review concepts [11]. Combining data from esteemed sources such as academic publications, conference papers, and reports [13][14], we use the incorporation of many points of view in our research. Primarily based on theme analysis, our data interpretation allows us to identify recurring themes and patterns across the literature [4]. Utilizing this exhaustive approach, we hope to provide an insightful analysis of the transforming possibilities of "EA", "blockchain", and "artificial intelligence" in reordering digital governance paradigms [5]. The systematic literature review process follows specific criteria to improve the credibility and dependability of our results [15]. We increase the validity of our findings by combining the viewpoints of subject-matter experts [16]. From outlining the scope and goal to synthesizing results from many sources, Figure 1 shows the sequential procedure used in doing the systematic literature review [17].

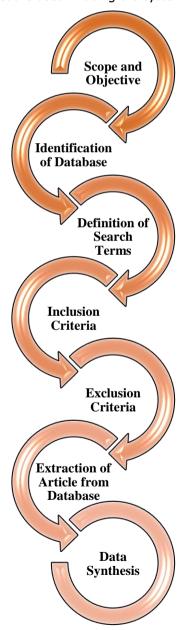


Figure 1. Systematic Process for Conducting a Literature Review

Starting with the clarification of the research scope and objectives, Figure 1 shows the methodical procedure followed in doing a Systematic Literature Review (SLR). Then the identification of pertinent databases starts along with careful choosing of search terms. Establishing criteria to simplify the choice process and define the inclusion and exclusion limits helps to underlie this process. After this, papers are gathered from the specified databases thereby enabling data synthesis to combine knowledge from several sources.

2.1 Research question

Throughout the study we are going to address the following research questions:

RQ1: How can the integration of enterprise architecture, blockchain technology, and artificial intelligence enhance digital governance?

RQ2: What are the main barriers and opportunities for using "enterprise architecture", "blockchain", and "artificial intelligence" in "e-government" initiatives?

RQ3: How may the framework for business architecture help to support "artificial intelligence" and "blockchain" deployment in "digital governance"?

RQ4: How may "enterprise architecture", "blockchain", and "artificial intelligence" help to increase government service transparency, efficiency, and accountability?

Table 1. Database Search Strategies for Enterprise Architecture, Blockchain, and AI in Digital Governance

Table 1. Databa	ise search strategies for Enterp	rise Architectu	re, Biockchain, and AI in Digital Governance
Database	Search Terms	Boolean	Search Strategy
Searched		Operators	
		Used	
IEEE Xplore	"Digital governance" AND	AND, OR	Combined key terms to find articles
·	"Blockchain"		focusing on "blockchain" applications in
			digital governance.
Google Scholar	"Enterprise Architecture"	AND, OR	Used broad terms to capture a wide range
-	OR "EA" AND "e-		of studies on EA and "e-government"
	government"		integration.
PubMed	"Artificial intelligence" AND	AND	Focused on "AI" applications in the public
	"public sector"		sector, filtering for peer-reviewed journals.
ScienceDirect	"Blockchain technology"	AND, OR	Targeted studies on "blockchain's" impact
	AND "government services"	,	on government services, using both
	-		specific and broad terms.
SpringerLink	"Digital transformation" OR	AND, OR	Searched for comprehensive reviews and
	"e-governance"		case studies on digital transformation in
	-		governance.

Searching many databases using specified phrases and "Boolean operators" constituted part of the "literature review". Combining "digital governance" AND "blockchain" in IEEE Xplore produced papers on blockchain uses in government. Research on "enterprise architecture" OR "EA" AND "e-government" was gathered using "Google Scholars". PubMed searched for peer-reviewed papers on artificial intelligence in the public sector concentrating on "public sector" AND "artificial intelligence". Scopus aimed "blockchain technology" AND "government services" to investigate how blockchain might affect government services. SpringerLink looked for thorough evaluations and case studies on "digital transformation" or "e-governance.

Table 2. Year-wise Distribution of Publications on Enterprise Architecture, Blockchain, and AI in Digital Governance

Governance			
Year of Publication	Number of Publications		
2017	2		
2018	3		
2019	5		
2020	4		
2021	7		
2022	6		
2023	2		
2024	1		

Publications on corporate architecture, blockchain, and artificial intelligence in digital governance have year-wise distribution that reveals an increasing interest over time. Beginning with two articles in 2017, the count steadily rose until it peaked in 2021 at seven. With six papers in 2022 and two in 2023, the next years showed a minor drop. As of yet, the 2024 data reveals just one publication. Reflecting the rising integration of these technologies in digital governance during this era, this trend shows more research activity and interest around 2020–2022. The current drop could point to changes in publication delays or research emphasis.

Table 3. Chronological Distribution of Publications in Enterprise Architecture, Blockchain, and AI in Digital Governance

Governance			
Inclusion Criteria	Exclusion Criteria		
Articles published in "peer-reviewed" journals or presented in reputable conferences.	Non-peer-reviewed articles or conference papers lacking credibility.		
Articles focusing on the integration of, or "Artificial	Articles unrelated to AI, Blockchain, and E-		
Intelligence", "and blockchain technology" In E e-	government.		
government			
Articles published between 2017 and 2024, ensure relevance to recent advancements.	Articles published before 2017 or after 2024, potentially lack relevance to contemporary research.		
Articles available in English to facilitate comprehension	Articles not available in English, hindering		
and analysis.	accessibility and understanding.		
Articles with clear methodologies and empirical evidence supporting their findings.	Articles lacking clarity in methodology or empirical evidence, compromising reliability.		

This table shows publications aimed at blockchain technology in the banking industry broken chronologically. Examining the distribution across years helps one understand the development and patterns in research interests as well as in this field's advances. Examining annual publication counts helps academics spot trends, pinpoint areas of declining or increasing research activity, and estimate the degree of scholarly attention blockchain technology receives over time within the banking sector. This study helps to clarify the course of research activities and can guide the next paths for scholarly investigation as well as for pragmatic field applications.

2.2 Data Extraction

The major focus of this systematic study was on holistically analyzing the interaction of artificial intelligence (AI), blockchain technology, and business design in digital governance. Sources included peer-reviewed publications, conference proceedings, and books published between 2017 and 2024 as well as reliable sources. Key databases like "IEEE Xplore", "ScienceDirect", "Web of Science" and "PubMed" were painstakingly searched using subjects including "enterprise architecture," "blockchain technology," "artificial intelligence," and "digital governance." Boolean operators such as "AND" and "OR" helped to limit search results thus ensuring the inclusivity of relevant research [14][15]. Research including "real data", "case studies", theoretical frameworks, or complete assessments underlining the applicability, challenges, and benefits of integrating enterprise architecture, blockchain, and "artificial intelligence" in e-governance projects was part of the inclusion requirements. Articles supporting focused reading and interpretation must be in English. Excluded were editorials, "non-peer-reviewed" literature, studies lacking methodological rigor or empirical data [12][18].

In the chosen works, theme analysis helped one to spot recurrent themes and patterns. Important subjects covered were security concerns, scalability concerns, governance structures, technological integration difficulties, and chances to raise public service openness and responsibility. This analytical technique makes it possible to combine study on how several technologies together help to change paradigms of global digital governance. The systematic review sought to present a coherent knowledge of the present scene, highlight expanding trends, and suggest future research pathways in this dynamic and varied issue [19][9].

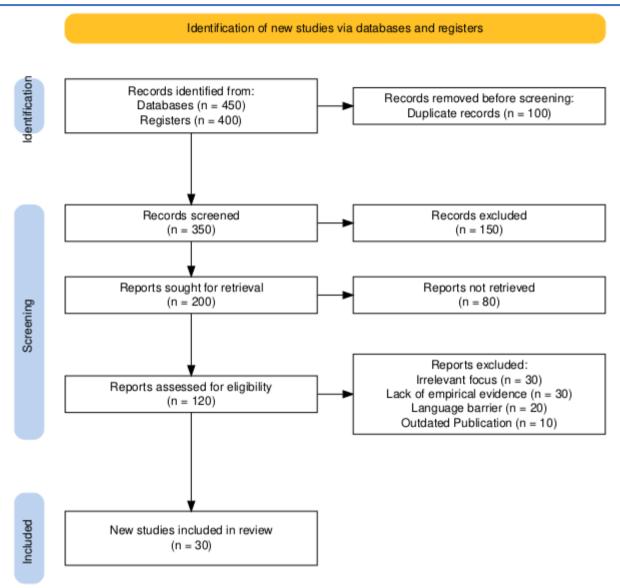


Figure 2. PRISMA 2020 Flow Diagram for Systematic Review Process

As conceptualized by Haddaway *et al.* (2022), the PRISMA 2020 flow diagram offers a comprehensive visual depiction of the systematic review process, hence improving research transparency and repeatability. The identification step began here with 850 records from registries (400) and databases (450). One hundred identical entries were deleted before the screening, leaving 750 records for the first examination [20]. 350 records were looked into during the screening phase; 150 of them were excluded using initial criteria. This left 200 reports for more retrieval work. But 80 reports were not obtained—either from access problems or other retrieval difficulties—so 120 reports remained to be evaluated for eligibility. 90 Articles were removed from the eligibility assessment for a variety of reasons: thirty for irrelevant focus, thirty for lack of empirical data, twenty for language issues, and 10 for antiquated publishing dates. These strict exclusion criteria guaranteed that the final assessment consisted only of the most useful and compelling research. Finally, the systematic review consisted of thirty exceptional articles and publications in total. Driven by the PRISMA 2020 tool, this all-encompassing strategy emphasizes the requirement of rigorous data management and transparency in synthesizing reliable knowledge. Apart from improving the credibility and repeatability of the review results, the methodical approach helps to clarify the documentation.

2.3 Data Synthesis

Looking at the confluence of "Artificial intelligence (AI)," "blockchain technology," and corporate architecture in the framework of "digital governance," this systematic study's data synthesis aggregates findings from a broad spectrum of scholarly sources. This synthesis results from conference events, peer-reviewed papers, and a careful study of authoritative books published between 2017 and 2024. Combining

many sources provides opinions on the probable applications, challenges, and strategic consequences of different technologies in political settings. Fundamental to the synthesis are common themes highlighting business design frameworks' critical role in enabling the adoption and integration of technology breakthroughs in "artificial intelligence" and "blockchain". Researchers regularly noted blockchain's ability to strengthen data security, transparency, and accountability in public service delivery [10][11], even if "artificial intelligence's" capacity to automate jobs and raise citizen involvement was underlined. Significant challenges include regulatory complexity, interoperability issues across many technological platforms, and data privacy and governance concerns, which also came to light in the synthesis. Moreover, scaling challenges in using these technologies in numerous government sectors were observed, which suggests the need for solid frameworks and strategic planning [15][14]. This synthesis stresses the transforming possibilities of combining enterprise architecture with blockchain and artificial intelligence technologies, shining conventional governance models by improving efficiency, decision-making processes, and effectiveness of service delivery [12][18]. It emphasizes the requirement of interdisciplinary collaboration and flexible regulations to maximize the benefits of modern technologies in advancing digital governance all around.

3. Result and Discussion

3.1 Results

This section compiles the outcomes of the systematic review on corporate design, blockchain technology, and artificial intelligence included in digital governance. The research exposes significant changes, challenges, and opportunities as well as their effects on enhancing public service responsibility, transparency, and efficiency.

RQ: How can the integration of enterprise architecture, blockchain technology, and artificial intelligence enhance digital governance?

Table 4. Summary of Findings on How Integration of Enterprise Architecture, Blockchain Technology, and Artificial Intelligence Enhances Digital Governance

	Artificial Intelligence Limances Digital Governance		
Study Title and	Key Findings		
Citation			
Ilin <i>et al</i> . (2021)	Enhanced interoperability and efficiency through integrated EA frameworks in		
	"e-government" transformations.		
Ahmad <i>et al.</i> (2021)	Design framework for immutable blockchain applications in "e-government",		
	ensuring data integrity and security.		
Al-Besher & Kumar	AI applications in "e-government" streamline services, improve decision-		
(2022)	making, and personalize citizen interactions.		
Alexopoulos et al.	Blockchain's role in enhancing transparency, reducing fraud, and increasing		
_(2019)	trust in government operations.		
Al-Mushayt (2019)	Automation of routine e-government processes using AI, leading to cost savings		
	and improved service delivery.		

Research looking at "Artificial intelligence (AI)", "blockchain technology", and "Enterprise architecture (EA)" shows that digital governance is much improved. Emphasizing the need for EA frameworks in improving interoperability and efficiency—two fundamental components of seamless government operations and service delivery—Ilin *et al.* (2021) underline blockchain's relevance using immutable frameworks guaranteeing data security and integrity [5], so preserving trust in government services [7]. Moreover, artificial intelligence applications in e-government significantly simplify processes, increase decision-making ability, and personalize citizen connections, thus improving service efficiency and responsiveness as Al-Besher & Kumar (2022) find. Moreover, the transparency of blockchain described by Alexopoulos *et al.* (2019) helps to reduce fraud and increase[10] public trust in government operations [21]. Al-Mushayt (2019) finally illustrates how artificial intelligence automates repetitious processes, therefore reducing expenses and improving the provision of e-government [22]. These findings therefore draw attention to the transformational opportunities of incorporating EA, blockchain, and artificial intelligence in digital governance, thus offering governments paths to increase efficacy, transparency, and public satisfaction.

RQ2: What are the main barriers and opportunities for using enterprise architecture, blockchain, and artificial intelligence in e-government initiatives?

Table 5. Challenges and Opportunities in Implementing Enterprise Architecture, Blockchain, and Artificial Intelligence in E-Government Initiatives

	Intelligence in 2 devertiment intidatives			
No	Challenges	Opportunities		
1	Complexity in integrating "blockchain" across	Enhanced transparency and auditability in		
	legacy systems (Batubara et al. (2018)).	government processes (Batubara et al., 2018).		
2	Lack of skilled workforce for "AI" implementation	Improved efficiency and service delivery through		
	in government agencies (Chohan & Akhter	"AI" automation (Chohan & Akhter, 2021).		
	(2021).			
3	Resistance to organizational change and legacy	Transformation to hybrid organizational forms for		
	system dependencies (Faro et al. (2022).	digital agility (Faro <i>et al.</i> , 2022).		
4	Inconsistencies in national "EA" frameworks affect	Alignment of "EA" with "e-government" goals for		
	interoperability (Mayakul et al. (2019).	standardized service delivery (Mayakul et al.,		
		2019).		
5	Governance challenges in managing decentralized	Increased accountability and trust through		
	blockchain networks (Tan et al. (2022).	decentralized governance models (Tan et al.,		
		2022).		

As the cases examined show, the application of enterprise architecture (EA), blockchain technology, and artificial intelligence (AI) in e-government presents great possibilities and several difficulties. Batubara et al. (2018) underline the difficulty of including blockchain in current legacy systems, affecting system compatibility and operational integration among several government agencies [23]. However, this integration presents chances for more auditability and openness in government operations, which is essential to lower fraud rates and raise public confidence [23]. Limiting the deployment of AI-driven solutions in enhancing service delivery and public participation, Chohan and Akhter (2021) bring out the critical obstacle of the shortage of skilled staff for AI implementation in government organizations. Notwithstanding this challenge, artificial intelligence presents an opportunity for automating repetitive tasks, improving the decision-making process, and optimally allocating resources within government operations [11]. Faro et al. (2022) discusses challenges to EA, blockchain, and artificial intelligence implementation in e-government opposition to organizational change and dependence on outdated technology [2]. Overcoming these challenges, however, might lead to drastic transformations toward hybrid organizational structures promoting digital agility and innovation [2]. Mayakul et al. (2019) highlight differences in [6]EA systems as a topic influencing interoperability and data exchange across government agencies [. Dealing with these problems provides possibilities to align EA systems with egovernment goals, assuring consistent service delivery and increased public satisfaction [6]. Tan et al. (2022) investigates how governance concerns with "e-government" systems address "blockchain" network management of distributed systems. Notwithstanding such challenges, the distributed government models created by blockchain technology provide chances for more public involvement in government operations. responsibility, and openness [9]. By addressing these challenges and leveraging the opportunities presented by "blockchain," artificial "intelligence," and "EA," one may significantly raise the efficiency, openness, and responsibility of "e-government" initiatives, so promoting a more responsive and citizen-centric government framework.

RQ3: How may the framework for business architecture help to support artificial intelligence and blockchain deployment in digital governance?

Table 6. Contributions of Enterprise Architecture Frameworks to the Deployment of Blockchain and AI in

Digital Governance

Aspect	Blockchain Deployment	AI Integration	Citation
Value Proposition	Enhances transparency, security, and trust in transactions. Supports decentralized, tamper-resistant data storage.	Improves decision-making, automates processes, and enhances citizen services.	Afarini & Hindarto (2023); Ahmad <i>et al.</i> (2021)
Use Cases	Secure voting systems, supply chain traceability, and land registries.	Predictive analytics, chatbots, fraud detection.	Ilin <i>et al.</i> (2021); Mukherjee (2022)

Data Management	Immutable ledger for transaction history. Smart contracts for automated execution.	Data collection, preprocessing, and model training.	Ølnes & Jansen (2017); Ahmad <i>et</i> <i>al.</i> (2021)
Security Considerations	Consensus mechanisms (e.g., PoW, PoS). Access controls.	Model explainability, privacy preservation.	Afarini & Hindarto (2023); Mukherjee (2022)
Interoperability	Standards for data exchange across systems.	Integration with existing IT infrastructure.	Ahmad <i>et al.</i> (2021); Ilin <i>et al.</i> (2021)
Governance Models	Decentralized governance for blockchain networks.	Ethical AI practices, compliance.	Ølnes & Jansen (2017); Afarini & Hindarto (2023)

"Enterprise architecture (EA)" systems greatly help to allow the deployment of many components required for the integration and operation of "blockchain technology" and "Artificial intelligence (AI)", therefore supporting "digital governance". Using blockchain, " EA " systems provide distributed, tamper-resistant data storage [24][7], increasing openness, security, and confidence in government transactions. By matching technological capability with governance needs, these models support "Artificial intelligence (AI)" in decision-making, process automation, and citizen service augmentation. Using "blockchain" use cases like secure voting systems, supply chain traceability, and land registries, "EA" frameworks help to ensure that these applications are incorporated into present systems [5][18]. Structured deployment approaches support artificial intelligence, predictive analytics, chatbots, and fraud detection, among other things. The unchangeable ledger of blockchain assures a consistent transaction history [25][7]. Smart contracts automating execution duties guarantee this also. Similarly, "EA" systems assure data integrity and effective use of "Artificial intelligence" utilizing systematic data gathering, preprocessing, and model training.

EA systems handle blockchain security concerns by employing consensus approaches (*e.g.*, Proof of Work, Proof of Stake) and access limits, preserving data integrity and security [24][18]. The main issues for artificial intelligence are maintaining trust and compliance, as model explainability and privacy preservation define both. Ensuring interoperability is essential; EA systems provide standards for data flow across systems, allowing the seamless integration of blockchain and artificial intelligence with present IT systems [7][5]. This is what underlies continuity and efficiency in digital governance. By supporting decentralized governance models for blockchain, EA systems help to improve operational integrity and accountability [24][25]. These models ensure adherence to regulations and ethical conduct for artificial intelligence, traits necessary for implementing sustainable AI in government. Using these contributions, EA frameworks provide a platform for effectively deploying blockchain and artificial intelligence in digital governance, resolving technical, operational, and ethical concerns and maximizing possibilities for enhanced public service delivery.

RQ4: How may enterprise architecture, blockchain, and artificial intelligence help to increase government service transparency, efficiency, and accountability?

Table 7. Potential Implications of Adopting Enterprise Architecture, Blockchain, and Artificial Intelligence in

Government Services				
Aspect	Implications for	Implications for	Implications for	Citation
	Efficiency	Transparency	Accountability	
Enterprise	Streamlined	Standardized	Clearer roles and	Faro <i>et al</i> .
Architecture	processes, and	procedures and	responsibilities, enhanced	(2022)
	reduced redundancy.	protocols.	oversight.	
Blockchain	Automated workflows, and faster transaction processing.	Immutable records, real-time data access.	Traceable transactions, and enhanced audit capabilities.	Batubara <i>et al.</i> (2018)
Artificial Intelligence	Predictive analytics for proactive service delivery.	Enhanced data analysis and reporting.	Automated compliance checks, and improved decision-making support.	Chohan & Akhter (2021); Tan <i>et al.</i> (2022)

506

Combining artificial intelligence (AI), blockchain technology, and enterprise architecture (EA) into government services offers significant potential to increase accountability, transparency, and efficiency. Each of these technologies enhances, in particular, these crucial aspects of governance. Process simplification and removing duplication in government operations enable enterprise design to boost efficiency. By providing a systematic approach to IT and organizational alignment, EA aids in optimizing resource allocation and assists in lowering duplicate tasks [2]. Blockchain technologies increase efficiency by accelerating transaction processing and automating procedures. The distributed nature of blockchain helps one rapidly and reliably confirm transactions, thereby saving the time and money required for traditional administrative processes (Batubara *et al.*, 2018). Artificial intelligence increases efficiency and enables governments to estimate needs and allocate resources early on using predictive analytics. From this comes more prompt and efficient customer service delivery [11].

Enterprise architecture increases transparency using harmonizing procedures and practices throughout government agencies. This ensures that all procedures are regularly documented and tracked. Therefore, it enables government activity monitoring [2]. Real-time access to transaction data made easy by immutable blockchain records guarantees accurate and unchangeable information. This transparency helps to build public trust as it enables individuals to independently verify the accuracy of official materal [23]. Artificial intelligence increases transparency and helps one to have more excellent knowledge of government acts and outcomes by allowing extensive data analysis and reporting. Data processed and presented enhances public scrutiny and informed decision-making [9].

Enterprise design enhances control and assures official accountability for their actions by clearly defining roles and responsibilities within government procedures. Well-specified governance systems help EA avoid mismanagement and corruption [2]. Blockchain technology mainly provides traceable transactions for auditing purposes. Following every purchase back to its source ensures that every activity is recorded and might be reviewed as required [23]. Artificial intelligence helps establish accountability using automated compliance checks and improves decision-making. Automated systems provide consistent policy and regulatory implementation as they may flag prospective issues for human inspection [11]. Using artificial intelligence, blockchain, and EA in government services will improve responsibility, openness, and efficiency. Every technology addresses different aspects of government, and, taken as a whole, its use produces more accountable, transparent, and efficient public services. The integration of many technologies needs meticulous design and execution under the supervision of robust EA frameworks to ensure their proper deployment and operation.

3.2 Discussion

Combining artificial intelligence (AI), blockchain technology, and enterprise architecture (EA) into digital governance provides various ways to improve government services, lower inefficiencies, and increase public trust. This session synthesizes the findings of the literature review and outcomes parts to demonstrate the combined potential and challenges these technologies provide, as well as their synergistic power. "Enterprise architecture" is the fundamental framework for ensuring that Information Technology" investments are congruent with business objectives, attaining interoperability, standardization, flexibility, and scalability. As Afarini and Hindarto (2023) and Mayakul *et al.* (2019) found, the application of "EA" in "e-government" may simplify procedures and lower duplicating of operations, thus improving significant efficiency gains [24][6]. This underscores even more the relevance of Faro *et al.* (2022) in standardizing procedures and explaining the roles and responsibilities on which openness and accountability rely [2]. By providing a systematic approach to controlling digital changes, EA systems ensure that technical implementations are consistent and conform to more general governance aims.

Blockchain technologies provide unmatched opportunities to enhance digital governance systems' openness, security, and efficiency. The unchangeability of blockchain records provides data integrity and trustworthiness, which are requirements for public confidence in government activities. Ahmad *et al.* (2021) stress how immutable blockchain frameworks may preserve transaction histories and automate procedures, thereby assuring transaction processing by expediting their protection of transaction histories [7], where this is particularly crucial in domains including supply chain traceability, land registries, and secure voting systems. Moreover, Batubara *et al.* (2018) note that blockchain may increase auditability in government systems, thus enabling transaction monitoring and discovery of discrepancies and raising accountability [23]. Artificial intelligence has evolved into a transformational tool in digital governance by enabling data-driven decision-making, process automation, and customizing services. Among other artificial intelligence uses, predictive analytics, chatbots, and fraud detection may considerably improve citizen happiness and service delivery [22]. Crucially for efficient administration, Chohan and Akhter (2021) show how "Artificial intelligence" might

507

optimize resource allocation and enhance policy outcomes [11]. "Artificial intelligence also increases transparency by using advanced data analysis and reporting tools, facilitating the complete knowledge of government processes and outcomes [9].

Leveraging the advantages of every technology, "EA", "blockchain", and "Artificial intelligence", taken together might provide a solid framework for "e-government". Blockchain delivers transparency and data integrity; "EA" provides the structural framework; Artificial intelligence optimizes processes and decision-making. This combined approach may provide more accurate, accountable, open, and responsive government systems. Mukherjee (2022) contends that an AI-based competent government enterprise architecture framework may increase the agility and responsiveness of governance systems, therefore establishing the capability of AI to collaborate with EA and blockchain [18].

Integration of these technologies presents significant challenges, even with the apparent benefits. Batubara et al. (2018) emphasized the difficulty of combining "blockchain" with conventional systems because operational issues and incompatibility could result [23]. Chohan and Akhter (2021) also underline that government agencies need mortified personnel and employees to use artificial intelligence, limiting the usage of AI-driven solutions [11]. Faro et al. (2022) handle challenges integrating EA, blockchain, and artificial intelligence in e-government opposition to organizational change and dependence on outdated systems [2]. These challenges provide opportunities. Dealing with the talent gap in artificial intelligence applications would assist in increasing efficiency and quality of services. Overcoming resistance to transformation may result in significant transformative changes toward hybrid organizational architectures supporting digital agility [2]. Matching national "EA" frameworks with "e-government" goals can enormously help to ensure standardized service delivery and increased public satisfaction (Mayakul et al., 2019). Blockchain technology further helps dispersed governance models to increase public participation in governance processes, transparency, and accountability [6]. EA, blockchain, and artificial intelligence, taken together, have immense power to transform digital governance. By combining these technologies, governments may increase accountability, transparency, and efficiency, thereby generating public services more suitable for their people. Realizing this potential, however, requires careful planning, skill development investment, and the building of enabling legal frameworks tackling the underlying challenges. Future research and innovation will help to unlock new opportunities and build more robust and responsive government systems.

4. Related Work

In recent years, the digital transformation of governance has become a global concern, with governments increasingly turning to creative technologies for service delivery improvement, transparency enhancement, and public engagement. The key includes Artificial Intelligence (AI), enterprise architecture (EA), and blockchain technology. In this literature review, the authors mainly focus on the applications, benefits, problems, and future directions of AI, EA, and Blockchain [1][2][3][4], thus investigates how synergistic these technologies can be in digital governance. Enterprise architectures (EAs) crucially support digital governance. Creating an enterprise architecture framework is one way to ensure that IT investments align with the organization's objectives. Afarini and Hindarto (2023) argue that EA should be used for e-government development and services because it can help ensure alignment between IT investments and organizational aspirations [24]. Similarly, Ilin *et al.* (2021) discuss EA modelling in the digital transformation era, emphasizing its importance for scaling supportability, standardization, and interoperability [5].

Blockchain technology has unmatched chances to improve digital governance systems' efficiency, security, and openness. Emphasizing their importance in maintaining data integrity and trustworthiness, Ahmad *et al.* (2021) examine the creation of blockchain immutability frameworks for e-government [7]. Al-Besher and Kumar (2022) also investigate how blockchain technology may be used to automate public information systems, streamlining administrative tasks and lowering bureaucratic inefficiencies [10]. Artificial intelligence (AI) has become a transforming agent in digital governance, allowing governments to automate tasks, customize services, and make data-driven choices using automation. Al-Mushayt (2019) addresses how artificial intelligence (AI) automation of e-government services improves service delivery and citizen happiness [22]. Emphasizing maximizing resource allocation and improving policy outcomes is possible, Chohan and Akhter (2021) investigate the value generation from AI-based e-government services [11].

Blockchain, artificial intelligence, and business architecture, when used together, have great potential to open new doors in digital governance. In their 2022 paper on the use of blockchain in e-governance decision-making, El Khatib *et al.* stress its synergy with business architecture in guaranteeing data integrity and process transparency [14], hence guaranteeing Moreover, Mukherjee (2022) suggests an AI-based competent

government enterprise design framework, therefore proving the possibility of AI to improve the responsiveness and agility of political institutions [18]. Despite its possible advantages, integrating EA, blockchain, and artificial intelligence in digital governance presents specific difficulties. Batubara *et al.* (2018) underline the difficulties of blockchain technology adoption for e-government, including scalability concerns and regulatory uncertainty [23]. Emphasizing the need to address technological, legal, and ethical issues, Ivič *et al.* (2022) also explore the prospects and difficulties in implementing AI, IoT, and blockchain technologies in e-government [15].

Several studies include case studies and comparative evaluations of e-government projects, therefore offering an understanding of several ways to embrace and apply technology. Analyzing how blockchain technology is developing as a supporting infrastructure for e-government at the Dubai Economic Department, Khan *et al.* (2019) stress how it influences public participation and service delivery [26]. Mayakul *et al.* (2019) compare national enterprise design and e-government points of view, which policymakers and practitioners would much appreciate [6].

Academic models for public sector administration and control of new technologies have been published. Tan *et al.* (2022) presents a conceptual framework for public sector blockchain governance stressing stakeholder engagement and regulatory compliance requirements [9]. Likewise, Prabhu and Raja (2023) provide a fresh architecture to help e-government flourish, thereby providing a road map for employing recently developed technology to drive digital transformation [19]. Ultimately, the mix of artificial intelligence, blockchain, and business design offers unheard-of opportunities to transform digital governance. Governments may enhance transparency, improve service delivery, and inspire public involvement by utilizing coordinated technologies. However, realizing all the opportunities of this integration requires overcoming various challenges, including ethical, technological, and legal ones. Going forward, research and innovation in this sector will help unlock new possibilities and build more robust and responsive government systems.

5. Conclusion and Recommendations

Digital governance's transforming strategy to improve government services involves combining enterprise architecture (EA), blockchain technology, and artificial intelligence (AI). Critical components for modernizing public sector operations and enhancing citizen involvement, efficiency, openness, and responsibility provide excellent opportunities for this convergence. The foundation is enterprise architecture, which offers a disciplined framework that links technical projects with corporate objectives. EA quarantees the best use of resources by simplifying procedures and cutting duplicates, opening the path for more effective government activities. With its distributed character and unchangeable records, blockchain technology offers government processes new degrees of security and openness. Its capacity to offer traceable transaction histories and realtime data access strengthens public confidence and helps to support robust auditing systems. Artificial intelligence enhances these technologies by allowing predictive analytics, automating repetitive operations, and enhancing decision-making processes. The ability of artificial intelligence in data analysis and reporting quarantees more informed and proactive governance, thereby assuring that services are provided effectively and customized to fit the changing demands of people. Integrating these technologies presents various technologically, legal, and ethical difficulties, notwithstanding their apparent advantages. Significant obstacles must be overcome: the complexity of combining blockchain with current legacy systems, the need for more public sector competent AI experts, and opposition to organizational transformation. Still, the possibilities these technologies provide exceed the difficulties. Governments may create more robust, responsive, and citizen-centric systems by encouraging a cooperative approach to governance and using the benefits of EA, blockchain, and artificial intelligence. The combined integration of artificial intelligence, blockchain technology, and business design has excellent power to revolutionize digital government. Governments can improve service delivery, increase transparency, and guarantee more responsibility by tackling related issues and grabbing opportunities, promoting a more inclusive and efficient governing system. The public sector stands on the threshold of a new digital transformation era as Research and innovation in this field keep developing; it promises a future whereby technology and governance cooperate to serve the public good.

Several strategic actions are advised if one wants to completely grasp the advantages of including artificial intelligence (AI), blockchain technology, and enterprise architecture (EA) in digital governance. Governments should first give the creation and application of thorough EA frameworks top priority, matching technical projects with organizational objectives. This will guarantee that procedures are simplified for the highest efficiency and that resources are maximized. Second, public sector labour upskilling and training investment are vital. Governments can close the present skill gap and improve the general capacity of their digital systems

by arming staff members with the required abilities to control and apply blockchain technologies and artificial intelligence. Third, it is imperative to encourage an innovative culture and an open attitude toward change inside government agencies. Leadership projects and change management strategies supporting the acceptance of new technology and approaches help to accomplish this. Finally, governments should create ethical rules and explicit legal systems to control the application of these technologies. This will guarantee that the application of blockchain and artificial intelligence is carried out in a transparent, safe, and consistent public values way.

Investigating the long-term effects of including EA, blockchain, and artificial intelligence in digital governance should take the front stage in the following studies. Research on the scalability and sustainability of these technologies—especially in different geopolitical settings—could look at Research should also focus on creating new governance structures capable of adequately controlling the distributed character of blockchain and guaranteeing robust monitoring and responsibility. Finally, the ethical consequences of artificial intelligence in public decision-making procedures demand more Research to create systems that guarantee objective and fair results. These fields of study will be critical in directing the continuous development of digital governance structures.

Acknowledgment

Throughout this research, Associate Professor Zariknkhail has been quite a helpful, guiding, and encouraging agent. I would want to especially thank him for this. The direction and quality of this work have been much shaped by his great knowledge and perceptive comments. This effort would not have attained its present degree of quality without his mentoring. I appreciate his constant devotion to my academic progress and development.

References

- [1] Saini, K., Mummoorthy, A., Chandrika, R., & Gowri Ganesh, N. S. (Eds.). (2023). *AI, IoT, and Blockchain Breakthroughs in E-governance*. IGI Global.
- [2] Faro, B., Abedin, B., & Cetindamar, D. (2022). Hybrid organizational forms in public sector's digital transformation: A technology enactment approach. *Journal of Enterprise Information Management, 35*(6), 1742-1763. https://doi.org/10.1108/JEIM-03-2021-0126
- [3] Balcerzak, A. P., Nica, E., Rogalska, E., Poliak, M., Klieštik, T., & Sabie, O. M. (2022). Blockchain technology and smart contracts in decentralized governance systems. *Administrative Sciences, 12*(3), 96. https://doi.org/10.3390/admsci12030096
- [4] Hou, H. (2017, July). The application of blockchain technology in E-government in China. In *2017 26th International Conference on Computer Communication and Networks (ICCCN)* (pp. 1-4). IEEE. https://doi.org/10.1109/ICCCN.2017.8038519
- [5] Ilin, I., Levina, A., Borremans, A., & Kalyazina, S. (2021). Enterprise architecture modeling in digital transformation era. In Murgul, V., & Pukhkal, V. (Eds.), *International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. Advances in Intelligent Systems and Computing* (Vol. 1259). Springer, Cham. https://doi.org/10.1007/978-3-030-57453-6_11
- [6] Mayakul, T., Sa-Nga-Ngam, P., Srisawat, W., & Kiattisin, S. (2019, December). A comparison of national enterprise architecture and e-government perspectives. In *2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-ICON)* (pp. 1-6). IEEE. https://doi.org/10.1109/TIMES-iCON47539.2019.9024591
- [7] Ahmad, D., Lutfiani, N., Ahmad, A. D. A. R., Rahardja, U., & Aini, Q. (2021). Blockchain technology immutability framework design in e-government. *Jurnal Administrasi Publik (Public Administration Journal)*, 11(1), 32-41. https://doi.org/10.31289/jap.v11i1.4310

- [8] Sadri, H., Yitmen, I., Tagliabue, L. C., Westphal, F., Tezel, A., Taheri, A., & Sibenik, G. (2023). Integration of blockchain and digital twins in the smart built environment adopting disruptive technologies—A systematic review. *Sustainability*, *15*(4), 3713. https://doi.org/10.3390/su15043713
- [9] Tan, E., Mahula, S., & Crompvoets, J. (2022). Blockchain governance in the public sector: A conceptual framework for public management. *Government Information Quarterly, 39*(1), 101625. https://doi.org/10.1016/j.giq.2021.101625
- [10] Al-Besher, A., & Kumar, K. (2022). Use of artificial intelligence to enhance e-government services. *Measurement: Sensors, 24,* 100484. https://doi.org/10.1016/j.measen.2022.100484
- [11] Chohan, S. R., & Akhter, Z. H. (2021). Electronic government services value creation from artificial intelligence: AI-based e-government services for Pakistan. *Electronic Government, an International Journal*, 17(3), 374-390. https://doi.org/10.1504/EG.2021.116003
- [12] Verma, S., & Sheel, A. (2022). Blockchain for government organizations: Past, present and future. *Journal of Global Operations and Strategic Sourcing, 15*(3), 406-430. https://doi.org/10.1108/JGOSS-08-2021-0063
- [13] Daramola, O., & Thebus, D. (2020, May). Architecture-centric evaluation of blockchain-based smart contract e-voting for national elections. In *Informatics* (Vol. 7, No. 2, p. 16). MDPI. https://doi.org/10.3390/informatics7020016
- [14] El Khatib, M., Al Mulla, A., & Al Ketbi, W. (2022). The role of blockchain in e-governance and decision-making in project and program management. *Advances in Internet of Things, 12*(3), 88-109. https://doi.org/10.4236/ait.2022.123006
- [15] Ivić, A., Milićević, A., Krstić, D., Kozma, N., & Havzi, S. (2022, November). The challenges and opportunities in adopting AI, IoT and blockchain technology in e-government: A systematic literature review. In *2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES)* (pp. 1-6). IEEE. https://doi.org/10.1109/CIEES55704.2022.9990833
- [16] Kassen, M. (2022). Blockchain and e-government innovation: Automation of public information processes. *Information Systems*, *103*, 101862. https://doi.org/10.1016/j.is.2021.101862
- [17] Alonaizi, S. Y., & Manuel, P. (2021, July). IoT-based smart government enablers: An exploration of governments' experiments. *In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4)* (pp. 58-64). IEEE. https://doi.org/10.1109/WorldS451998.2021.9514061
- [18] Mukherjee, P. K. (2022, February). Artificial intelligence-based smart government enterprise architecture (AI-SGEA) framework. In *International Symposium on Artificial Intelligence* (pp. 325-333). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-22485-0_30
- [19] Prabhu, S. M., & Raja, M. (2023). New architecture to facilitate the expansion of e-government. In Gaie, C., & Mehta, M. (Eds.), Recent Advances in Data and Algorithms for e-Government. Artificial Intelligence-Enhanced Software and Systems Engineering (Vol. 5). Springer, Cham. https://doi.org/10.1007/978-3-031-22408-9_3
- [20] Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimized digital transparency and open synthesis. *Campbell Systematic Reviews*, 18, e1230. https://doi.org/10.1002/cl2.1230
- [21] Alexopoulos, C., Charalabidis, Y., Androutsopoulou, A., Loutsaris, M. A., & Lachana, Z. (2019). Benefits and obstacles of blockchain applications in e-government. https://aisel.aisnet.org/hicss-52/dg/transformational_government/2/

- [22] Al-Mushayt, O. S. (2019). Automating e-government services with artificial intelligence. *IEEE Access, 7,* 146821-146829. https://doi.org/10.1109/ACCESS.2019.2946204
- [23] Batubara, F. R., Ubacht, J., & Janssen, M. (2018, May). Challenges of blockchain technology adoption for e-government: A systematic literature review. In *Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age* (pp. 1-9). https://doi.org/10.1145/3209281.3209317
- [24] Afarini, N., & Hindarto, D. (2023). The proposed implementation of enterprise architecture in e-government development and services. *International Journal Software Engineering and Computer Science (IJSECS)*, *3*(3), 219-229. https://doi.org/10.35870/ijsecs.v3i3.1756
- [25] Ølnes, S., & Jansen, A. (2017). Blockchain technology as a support infrastructure in e-government. In *Electronic Government: 16th IFIP WG 8.5 International Conference, EGOV 2017, St. Petersburg, Russia, September 4-7, 2017, Proceedings 16* (pp. 215-227). Springer International Publishing. https://doi.org/10.1007/978-3-319-64677-0_18
- [26] Khan, S. N., Shael, M., & Majdalawieh, M. (2019, July). Blockchain technology as a support infrastructure in e-government evolution at Dubai Economic Department. In *Proceedings of the 1st International Electronics Communication Conference* (pp. 124-130). https://doi.org/10.1145/3343147.3343164.