Analisis Performa Algoritma Klasifikasi Naive Bayes dan C4.5 untuk Prediksi Penerima Bantuan Jaminan Kesehatan
Main Article Content
Abstract
Health is the basis of the level of humanity. However, in reality, not everyone with social welfare problems has national health insurance. The large number of patient files that must be checked makes it difficult for officers to identify potential beneficiaries. Based on these problems, a procedure or method is needed that can assist officers in identifying potential beneficiaries. From the results of the performance testing of the two models using a confusion matrix with 730 records used as training data and 313 records used as test data, the C4.5 classification algorithm gets the highest accuracy value, which is 99.04%. A total of 310 data records were predicted correctly with an error rate or error of 0.96% or as many as 3 data records from 313 data tested. While the Naive Bayes classification algorithm gets an accuracy value of 92.97%. A total of 291 data records were predicted to be correct with an error rate of 7.03% or as many as 22 data records were predicted to be incorrect from the 313 data tested
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to JTIK journal and Research Division, KITA Institute as the publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
JTIK journal and Research Division, KITA Institute and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in JTIK journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form JTIK]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Muhammad Wali (Editor-in-Chief)
Editorial Office of Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi)
Research Division, KITA Institute
Teuku Nyak Arief Street Nomor : 7b, Lamnyong, Lamgugop, Kota Banda Aceh
Telp./Fax: 0651-8070141
Email: jtik@lembagakita.org - journal@lembagakita.org
References
Ardinata, M., 2020. Tanggung Jawab Negara Terhadap Jaminan Kesehatan Dalam Perspektif Hak Asasi Manusia. Jurnal HAM, 11(2), pp.319-332.
Inayati, S., Yuliana, Y. and Hanafiah, A., 2021. Prediksi Jumlah Peserta BPJS Penerima Bantuan Iuran (PBI) APBN menggunakan Metode Fuzzy Time Series Cheng. Barekeng: Jurnal Ilmu Matematika dan Terapan, 15(2), pp.373-384. DOI: https://doi.org/10.30598/barekengvol15iss2pp373-384
Nomor, P.P.R.I., 12. tahun 2013 tentang Jaminan Kesehatan. Jakarta: Kementerian Hukum dan Hak Asasi Manusia.
PERWALI Kota Depok No. 4 Tahun 2016 Tentang Petunjuk Teknis Pembiayaan Jaminan Kesehatan Masyarakat Miskin di Luar Kuota Penerima Bantuan Iuran Jaminan Kesehatan Dan Bantuan Sosial Tidak Terencana Bagi Orang Terlantar [JDIH BPK RI], n.d.)
Saputra, R.A., Wasiyanti, S. and Pribadi, D., 2021. Information Gain Pada Algoritma C4. 5 Untuk Klasifikasi Penerimaan Bantuan Pangan Non Tunai (BPNT). Indonesian Journal of Business Intelligence (IJUBI), 4(1), pp.25-30. DOI: http://dx.doi.org/10.21927/ijubi.v4i1.1757
Sulihati, I., 2022. Penerapan Komparasi Algoritma C4. 5 dan Naïve Bayes untuk Menentukan Hasil Seleksi Masuk Perguruan Tinggi. JURNAL TECNOSCIENZA, 6(2), pp.311-320.
Hakim, L.N., Sholihin, I., Rinaldi, A.R. and Morina, I.S., 2021. Penerapan Data Mining Algoritma Naïve Bayes dalam Menentukan Program Keluarga Pra Sejahtera. JURNAL DATA SCIENCE & INFORMATIKA, 1(1), pp.21-25.
Ubaedi, I. and Djaksana, Y.M., 2022. Optimasi Algoritma C4. 5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit. JSiI (Jurnal Sistem Informasi), 9(1), pp.17-26.
Bahtiar, A. and Silitonga, P.D., 2020. Penerapan Algoritma Decision Tree Untuk Memprediksi Penerima Bantuan Keluarga Harapan. Jurnal ICT: Information Communication & Technology, 19(1), pp.70-76. DOI: https://doi.org/10.36054/jict-ikmi.v19i1.93
Hasanah, M.A., Soim, S. and Handayani, A.S., 2021. Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), pp.103-108.
Lidysari, W., Tambunan, H.S. and Qurniawan, H., 2022. Penerapan Data Mining Dalam Menentukan Kelayakan Penerima Bantuan Sosial Pemko Dengan Algoritma C4. 5 (Kasus Kantor Kelurahan Martoba). Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), 3(1), pp.53-61.
Haryatmi, E. and Hervianti, S.P., 2021. Penerapan Algoritma Support Vector Machine Untuk Model Prediksi Kelulusan Mahasiswa Tepat Waktu. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(2), pp.386-392. DOI: https://doi.org/10.29207/resti.v5i2.3007
Algoritma Supervised Vs Unsupervised Learning, Cari Tahu Bedanya. 2022. DQLab. Available at: https://dqlab.id/algoritma-supervised-vs-unsupervised-learning
Tuntun, R., Kusrini, K. and Kusnawi, K., 2022. Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(4), pp.2111-2119.
Azhari, M., Situmorang, Z. and Rosnelly, R., 2021. Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4. 5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), pp.640-651. DOI: https://doi.org/10.30865/mib.v5i2.2937
Damuri, A., Riyanto, U., Rusdianto, H. and Aminudin, M., 2021. Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako. JURIKOM (Jurnal Riset Komputer), 8(6), pp.219-225. DOI: https://doi.org/10.30865/jurikom.v8i6.3655
Fitrianah, D., Gunawan, W. and Sari, A.P., 2022. Studi Komparasi Algoritma Klasifikasi C5. 0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir. Techno. Com, 21(1), pp.1-11.