Aplikasi Perbandingan Sistem Perbaikan Citra Digital menggunakan Metode Dekonvolusi Wiener, Lucy Richardson, dan Regularized

Dika Rizki Darmawan, Fauziah Fauziah, Ratih Titi Komalasari

Abstract


In some cases, there is some damage to an image caused by interference during the image capture process. Blurred image damage can be overcome by deconvolution digital image processing. There are various methods to repair the image blur damage, including using the Regularized, Wiener, and Lucy Richardson deconvolution methods. Each blurring image repair method produces a different debluring result of image processing. Image comparison application was built to compare the ability of image restoration results to a Motion Blur image with the algorithms used in deconvolution. Image restoration comparison parameters used include determining the MSE and PSNR values between the test image and the deconvolved image. The results of implementing the comparative application of Motion Blur image improvement to 270 blur simulations consisting of 9 different levels of image blurring, obtained the average PSNR value for Wiener's deconvolution = 59.16dB, Lucy Richardson = 26.92dB and Regularized = 36.94dB.

Keywords:

Image Restoration; Lucy Richardson; Motion Blur; Regularized; Wiener.


Full Text:

PDF

References


Afiyat Nur, 2017. Analisis Restorasi Citra Kabur Algoritma Wiener Menggunakan Indeks Kualitas Citra. Nusantara Journal of Computers and Its Applications, 2(1).

Effendi Hasni, 2009. Restorasi Citra Kabur (Blur) Menggunakan Algoritma Wiener. TeknikA, 32(1).

Hendriyani Yeka, 2014. Perbandingan Algoritma Lucy-Richardson Dan Wiener Dalam Memperbaiki Citra Kabur(Blur). LP2M STMIK Nurdin Hamzah Jambi, 7(1), pp.93-100.

E. A. Dian, 2017. Analisis Kinerja Metode Lucy-Richardson dan Blind Deconvolution, Jurnal Teknologi Rekayasa, 22(1).

Yeka Hendrayani, 2012. Restorasi Citra Kabur (Blur) Menggunakan Algoritma Lucy Richardson. Junral Teknologi Informasi Dan Pendidikan, 5(2), pp.166-174.

B. Prodip, S.S. Abu, and M. Mohammed, 2015. Debluring Image using a Wiener Filter. International Journal of Computer Application, 109(7).

P. Frosti, and O.U. Magnus, 2007. MTF-Based Debluring Using a Wiener Filter for CS and MRA Pansharpening Methods. IEEE , pp.2255-2269.

El-Khamy S.E. , Saad E.M., and Hadhoud M.M, 2020. A Modified Wienier Filter for Multi-Frame Restoration of Blurred And Noisy Images. World Scientific, 2(2).

Puri Deepa,and K. M. Santosh, 2017. Analysis of Image Restoration Techniques at Different Noises. IJCSIT : International Journal of Computer Science and Information Technologies, 8(3).

G. K. Moon and K. K. Angelos, 1995. General Choice of the Regulation Functional in Regularized Image Restoration. IEEE, 4(5).

Neha and Yogesh Kumar, 2018. Image De-Bluring Technique Basen on Adaptive Wiener Filtering. International Journal of Management, 8(8), pp.279-285.




DOI: https://doi.org/10.35870/jtik.v4i2.154

Refbacks

  • There are currently no refbacks.