Text Mining Analysis untuk Identifikasi Artikel Hoax Menggunakan Algoritma Cosine Similarity

Yulianty Lasena, Husdi Husdi, Maryam Hasan

Abstract


The impact of significant technological developments in everyday life starts from simple activities to activities that require a high level of precision. The development of information technology also contributes to the dissemination of news. In Indonesia, Information Technology is also developing rapidly where internet users currently number 132.7 million or 52% of Indonesia's population. The exchange of information between people is a positive thing, but its dissemination through social media is not all facts. In a number of cases that have occurred, for example the spread of news that is not factual is often called a hoax. The latest technology that can help overcome this, one of which is the technology known as Text Mining. This is used to solve problems faced by internet users with fake information (hoax).

Keywords:

Hoax, Articles, Cosine Similarity, Text Mining.


Full Text:

PDF

References


R Pakpahan, “Menurut Pakpahan (2017), Teknologi Informasi untuk Indonesia sendiri ikut berkembang pesat dimana pengguna internet di Indonesia saat ini berjumlah 132,7 juta atau 52% dari jumlah penduduk Indonesia,” Konf. Nas. Ilmu Sos. dan Teknol., 2017.

A. Errissya Rasywir and Purwarianti, “Eksperimen pada Sistem Klasifikasi Berita Hoax Berbahasa Indonesia Berbasis Pembelajaran Mesin,” 2015.

G. W. Frista, “Deteksi Konten Hoax Berbahasa Indonesia Pada Media Sosial Menggunakan Metode Levenshtein Distance,” pp. 1–78, 2018.

D. Maulina and R. Sagara, “Klasifikasi Artikel Hoax Menggunakan Support Vector Machine Linear Dengan Pembobotan Term Frequency – Inverse Document Frequency,” vol. 2, no. 1, pp. 35–40, 2018.

A. G. TAMMAM, “DETEKSI HOAKS PADA MEDIA SOSIAL BERBASIS TEXT MINING CLASSIFICATION SYSTEM,” Univ. Nusant. PGRI KEDIRI, vol. 15, no. 2, pp. 2017–2019, 2018.

H. Husdi and Y. Lasena, “Real Time Analisys Berbasis Internet Of Things Untuk Prediksi Iklim Lahan Pertanian,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 3, pp. 834–840, 2020.

M. P. R. Putra and K. R. N. Wardani, “Penerapan Text Mining Dalam Menganalisis Kepribadian Pengguna Media Sosial,” JUTIM (Jurnal Tek. Inform. Musirawas), vol. 5, no. 1, pp. 63–71, 2020.

S. N. Asiyah and K. Fithriasari, “Klasifikasi Berita Online Menggunakan Metode Support Vector Machine Dan K-Nearest Neighbor,” J. Sains dan Seni ITS, vol. 5, no. 2, pp. 317–322, 2016.

M. D. R. Wahyudi, “Penerapan Algoritma Cosine Similarity pada Text Mining Terjemah Al-Qur’an Berdasarkan Keterkaitan Topik,” Semesta Tek., vol. 22, no. 1, pp. 41–50, 2019.

S. Syamsuddin, Ahyuna, and K. Alloto’dang, “Peracangan Sistem Klasifikasi Surat Elektronik (E-Mail) Menggunakan Metode Cosine Similarity,” J. Syntax Admiration, vol. 1, no. 5, pp. 594–606, 2020.

W. Darmalaksana, C. Slamet, W. B. Zulfikar, I. F. Fadillah, D. S. adillah Maylawati, and H. Ali, “Latent semantic analysis and cosine similarity for hadith search engine,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 1, pp. 217–227, 2020.

R. A. Purba, S. Suparno, and M. Giatman, “The optimalization of cosine similarity method in detecting similarity degree of final project by the college students,” IOP Conf. Ser. Mater. Sci. Eng., vol. 830, no. 3, pp. 1–7, 2020.

W. Hardi, “Pengelompokan Topik Dokumen Berbasis Text Mining Dengan Algoritme K-Means : Studi Kasus Pada Dokumen Kedutaan Besar Australia Jakarta,” vol. 21, no. 1, pp. 67–76, 2019.

R. Ahmad, “E-learning Automated Essay Scoring System Menggunakan Metode Searching Text Similarity Matching Text,” J. Penelit. Enj., vol. 22, no. 1, pp. 38–43, 2019.

R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Jurnal Teknik Elektro,” J. Tek. Elektro, vol. 9, no. 1, pp. 18–23, 2017.

G. S. Victor, P. Antonia, and S. Spyros, “CSMR: A scalable algorithm for text clustering with cosine similarity and MapReduce,” IFIP Adv. Inf. Commun. Technol., vol. 437, no. September, pp. 211–220, 2014.


Refbacks

  • There are currently no refbacks.